CAREER: Developing efficient and scalable bioinformatics methods and databases to analyze the adaptive immune repertoires of vertebrate species
职业:开发高效且可扩展的生物信息学方法和数据库来分析脊椎动物的适应性免疫库
基本信息
- 批准号:2041984
- 负责人:
- 金额:$ 74.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Recent advances in high-throughput technologies have led to the broad applicability of immunogenomics in studying the adaptive immune repertoire. These technologies are capable of generating large-scale datasets that can be used across a wide range of biological domains, including immunology. The project will provide systematics computational resources for understanding the mechanisms and evolution of adaptive immune systems. This will be achieved by delivering robust and easy-to-use open-source software as well as empirical results in form of easy-to-use databases assembled by applying proposed bioinformatics methods on diverse and large-scale genomic datasets. The project will facilitate collaborations across disciplines and will bring together researchers and students from computer science, life science, and bioinformatics, leading to stronger interactions across these communities. Additionally, the project will develop an interactive educational platform for learning and training in big data analytic techniques using python-based interactive notebooks. The online platform will be specifically tailored towards students with limited prior exposure to computational sciences. The platform will be made available at the national level for faculty and students enrolled at teaching-focused institutions. The project will develop efficient and scalable bioinformatics methods for improving current V(D)J reference databases and characterizing T and B cell receptor repertoire across a variety of vertebrate species. Specifically, the project will develop 1) robust and scalable methods to assemble V(D)J alleles from next-generation sequencing data, 2) accurate and robust species- and strain-specific methods to assemble B and T cell receptor repertoire from next-generation sequencing data. Additionally, the project will enrich existing immunogenomics databases of V(D)J alleles and receptor sequences across various vertebrate species by applying the developed methods across hundreds of thousands of samples. To promote the dissemination of obtained results, the assembled immune receptor sequences will be shared as an easy-to-use database with a rich set of functionalities. The developed database will allow life science researchers to systematically compare somatic events that give rise to receptor variation in vertebrate species and provide novel insight into the evolution of adaptive immunity. Results of the project can be found at https://github.com/Mangul-Lab-USC/immune-repertoires-vertebrate-species.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
高通量技术的最新进展导致免疫基因组学在研究适应性免疫曲目中的广泛适用性。这些技术能够生成大规模数据集,这些数据集可在包括免疫学在内的广泛的生物领域中使用。该项目将提供系统计算资源,以了解适应性免疫系统的机制和演变。通过提供易于使用的数据库的形式,通过将建议的生物信息学方法应用于各种和大规模的基因组数据集合中,以易于使用的数据库的形式来实现这一点。该项目将促进跨学科的合作,并将计算机科学,生命科学和生物信息学的研究人员和学生汇集在一起,从而导致这些社区之间的互动更强。此外,该项目将开发一个交互式教育平台,用于使用基于Python的交互式笔记本的大数据分析技术学习和培训。在线平台将专门针对先前接触计算科学的学生进行量身定制。该平台将在国家一级为教学机构入学的教职员工提供。该项目将开发有效且可扩展的生物信息学方法,以改善当前V(D)J参考数据库,并表征跨多种脊椎动物的T和B细胞受体库。 具体而言,该项目将开发1)从下一代测序数据中组装V(d)J等位基因的强大而可扩展的方法,2)从下一代测序数据中组装B和T细胞受体库的准确和健壮的物种和菌株特异性方法。此外,该项目将通过在数十万个样品中应用开发的方法来丰富V(d)J等位基因和受体序列的现有免疫基因组学数据库。为了促进获得的结果的传播,组装的免疫受体序列将作为具有丰富功能集的易于使用的数据库共享。开发的数据库将允许生命科学研究人员系统地比较脊椎动物物种的受体变异的体细胞事件,并提供对适应性免疫演变的新见解。该项目的结果可以在https://github.com/mangul-lab-usc/immune-repertoires-vertebrate-species中找到。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的评估审查审查标准来通过评估来获得支持的。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
pyTCR: A comprehensive and scalable solution for TCR-Seq data analysis to facilitate reproducibility and rigor of immunogenomics research.
- DOI:10.3389/fimmu.2022.954078
- 发表时间:2022
- 期刊:
- 影响因子:7.3
- 作者:Peng, Kerui;Moore, Jaden;Vahed, Mohammad;Brito, Jaqueline;Kao, Guoyun;Burkhardt, Amanda M.;Alachkar, Houda;Mangul, Serghei
- 通讯作者:Mangul, Serghei
Systematic evaluation of transcriptomics-based deconvolution methods and references using thousands of clinical samples
- DOI:10.1093/bib/bbab265
- 发表时间:2021-08-04
- 期刊:
- 影响因子:9.5
- 作者:Nadel, Brian B.;Oliva, Meritxell;Mangul, Serghei
- 通讯作者:Mangul, Serghei
RNA-seq data science: From raw data to effective interpretation.
- DOI:10.3389/fgene.2023.997383
- 发表时间:2023
- 期刊:
- 影响因子:3.7
- 作者:Deshpande, Dhrithi;Chhugani, Karishma;Chang, Yutong;Karlsberg, Aaron;Loeffler, Caitlin;Zhang, Jinyang;Muszynska, Agata;Munteanu, Viorel;Yang, Harry;Rotman, Jeremy;Tao, Laura;Balliu, Brunilda;Tseng, Elizabeth;Eskin, Eleazar;Zhao, Fangqing;Mohammadi, Pejman;Labaj, Pawel P.;Mangul, Serghei
- 通讯作者:Mangul, Serghei
Unlocking capacities of genomics for the COVID-19 response and future pandemics.
- DOI:10.1038/s41592-022-01444-z
- 发表时间:2022-04
- 期刊:
- 影响因子:48
- 作者:Knyazev, Sergey;Chhugani, Karishma;Sarwal, Varuni;Ayyala, Ram;Singh, Harman;Karthikeyan, Smruthi;Deshpande, Dhrithi;Baykal, Pelin Icer;Comarova, Zoia;Lu, Angela;Porozov, Yuri;Vasylyeva, Tetyana, I;Wertheim, Joel O.;Tierney, Braden T.;Chiu, Charles Y.;Sun, Ren;Wu, Aiping;Abedalthagafi, Malak S.;Pak, Victoria M.;Nagaraj, Shivashankar H.;Smith, Adam L.;Skums, Pavel;Pasaniuc, Bogdan;Komissarov, Andrey;Mason, Christopher E.;Bortz, Eric;Lemey, Philippe;Kondrashov, Fyodor;Beerenwinkel, Niko;Lam, Tommy Tsan-Yuk;Wu, Nicholas C.;Zelikovsky, Alex;Knight, Rob;Crandall, Keith A.;Mangul, Serghei
- 通讯作者:Mangul, Serghei
A comprehensive benchmarking of WGS-based deletion structural variant callers
- DOI:10.1093/bib/bbac221
- 发表时间:2022-06-27
- 期刊:
- 影响因子:9.5
- 作者:Sarwal,Varuni;Niehus,Sebastian;Mangul,Serghei
- 通讯作者:Mangul,Serghei
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Serghei Mangul其他文献
Serghei Mangul的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Serghei Mangul', 18)}}的其他基金
RCN-UBE: Sustainable, nationwide network to promote reproducible big-data analysis in biology programs within community colleges and minority-serving institutions
RCN-UBE:可持续的全国性网络,旨在促进社区大学和少数族裔服务机构内生物学项目的可重复大数据分析
- 批准号:
2316223 - 财政年份:2023
- 资助金额:
$ 74.43万 - 项目类别:
Standard Grant
EAGER: Developing a framework to identify and mitigate perceptual and technical barriers in code sharing to facilitate reproducible and transparent research
EAGER:开发一个框架来识别和减轻代码共享中的感知和技术障碍,以促进可重复和透明的研究
- 批准号:
2135954 - 财政年份:2021
- 资助金额:
$ 74.43万 - 项目类别:
Standard Grant
相似国自然基金
复杂壁湍流相干结构时空发展演化机理与人工智能高效复合减阻策略的实验研究
- 批准号:12332017
- 批准年份:2023
- 资助金额:239 万元
- 项目类别:重点项目
发展高效一步酶法策略研究三阴性乳腺癌潜在粘蛋白寡糖修饰的药物靶点
- 批准号:22307127
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向可移动设备和可持续发展目标的新型超高效柔性多结太阳能电池的基础问题研究
- 批准号:62211540010
- 批准年份:2022
- 资助金额:20 万元
- 项目类别:
发展基于硫代环丙烯酮和基于多氟代芳基叠氮的高效生物正交反应及其应用
- 批准号:22177010
- 批准年份:2021
- 资助金额:60.00 万元
- 项目类别:面上项目
发展基于硫代环丙烯酮和基于多氟代芳基叠氮的高效生物正交反应及其应用
- 批准号:
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
相似海外基金
Developing and enabling efficient hypothesis test for response-adaptive design with patient benefit goals
开发并启用有效的假设检验,以实现具有患者利益目标的响应自适应设计
- 批准号:
MR/Z503538/1 - 财政年份:2024
- 资助金额:
$ 74.43万 - 项目类别:
Research Grant
Developing efficient and non-transgenic transformation methods for sterile and/or recalcitrant crops
开发针对不育和/或顽固作物的高效非转基因转化方法
- 批准号:
10107465 - 财政年份:2024
- 资助金额:
$ 74.43万 - 项目类别:
Launchpad
Developing the world’s 1st scalable, end-to-end system for cost-efficient, sustainable cultivated pork meat production
开发世界上第一个可扩展的端到端系统,以实现经济高效、可持续的养殖猪肉生产
- 批准号:
10079403 - 财政年份:2024
- 资助金额:
$ 74.43万 - 项目类别:
Collaborative R&D
Developing CRISPR Prime Editing for highly efficient precise gene editing
开发 CRISPR Prime 编辑以实现高效精确的基因编辑
- 批准号:
DE230101081 - 财政年份:2023
- 资助金额:
$ 74.43万 - 项目类别:
Discovery Early Career Researcher Award
Optimal Technology Policies for Achieving Efficient Economic Development in Developing Countries
发展中国家实现高效经济发展的最佳技术政策
- 批准号:
23KJ0715 - 财政年份:2023
- 资助金额:
$ 74.43万 - 项目类别:
Grant-in-Aid for JSPS Fellows