CAREER: Developing efficient and scalable bioinformatics methods and databases to analyze the adaptive immune repertoires of vertebrate species

职业:开发高效且可扩展的生物信息学方法和数据库来分析脊椎动物的适应性免疫库

基本信息

  • 批准号:
    2041984
  • 负责人:
  • 金额:
    $ 74.43万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-04-01 至 2026-03-31
  • 项目状态:
    未结题

项目摘要

Recent advances in high-throughput technologies have led to the broad applicability of immunogenomics in studying the adaptive immune repertoire. These technologies are capable of generating large-scale datasets that can be used across a wide range of biological domains, including immunology. The project will provide systematics computational resources for understanding the mechanisms and evolution of adaptive immune systems. This will be achieved by delivering robust and easy-to-use open-source software as well as empirical results in form of easy-to-use databases assembled by applying proposed bioinformatics methods on diverse and large-scale genomic datasets. The project will facilitate collaborations across disciplines and will bring together researchers and students from computer science, life science, and bioinformatics, leading to stronger interactions across these communities. Additionally, the project will develop an interactive educational platform for learning and training in big data analytic techniques using python-based interactive notebooks. The online platform will be specifically tailored towards students with limited prior exposure to computational sciences. The platform will be made available at the national level for faculty and students enrolled at teaching-focused institutions. The project will develop efficient and scalable bioinformatics methods for improving current V(D)J reference databases and characterizing T and B cell receptor repertoire across a variety of vertebrate species. Specifically, the project will develop 1) robust and scalable methods to assemble V(D)J alleles from next-generation sequencing data, 2) accurate and robust species- and strain-specific methods to assemble B and T cell receptor repertoire from next-generation sequencing data. Additionally, the project will enrich existing immunogenomics databases of V(D)J alleles and receptor sequences across various vertebrate species by applying the developed methods across hundreds of thousands of samples. To promote the dissemination of obtained results, the assembled immune receptor sequences will be shared as an easy-to-use database with a rich set of functionalities. The developed database will allow life science researchers to systematically compare somatic events that give rise to receptor variation in vertebrate species and provide novel insight into the evolution of adaptive immunity. Results of the project can be found at https://github.com/Mangul-Lab-USC/immune-repertoires-vertebrate-species.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
高通量技术的最新进展使得免疫基因组学在适应性免疫库研究中得到广泛应用。这些技术能够生成大规模数据集,可用于包括免疫学在内的广泛生物领域。该项目将为理解适应性免疫系统的机制和进化提供系统学计算资源。这将通过提供强大且易于使用的开源软件以及通过在多样化和大规模基因组数据集上应用所提出的生物信息学方法来组装的易于使用的数据库形式的经验结果来实现。该项目将促进跨学科合作,并将计算机科学、生命科学和生物信息学的研究人员和学生聚集在一起,从而加强这些社区之间的互动。此外,该项目还将开发一个交互式教育平台,使用基于Python的交互式笔记本来学习和培训大数据分析技术。该在线平台将专门为之前接触过计算科学的学生量身定制。该平台将在全国范围内向教学机构的教师和学生开放。该项目将开发高效且可扩展的生物信息学方法,以改进当前的 V(D)J 参考数据库并表征各种脊椎动物物种的 T 和 B 细胞受体库。 具体来说,该项目将开发 1) 稳健且可扩展的方法,用于从下一代测序数据组装 V(D)J 等位基因,2) 准确且稳健的物种和菌株特异性方法,用于从下一代测序数据组装 B 和 T 细胞受体库。生成测序数据。此外,该项目还将通过在数十万个样本中应用开发的方法来丰富各种脊椎动物物种的 V(D)J 等位基因和受体序列的现有免疫基因组数据库。为了促进所获得的结果的传播,组装的免疫受体序列将作为具有丰富功能的易于使用的数据库进行共享。开发的数据库将使生命科学研究人员能够系统地比较引起脊椎动物物种受体变异的体细胞事件,并为适应性免疫的进化提供新的见解。该项目的结果可以在 https://github.com/Mangul-Lab-USC/immune-repertoires-vertebrate-species 找到。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值进行评估,被认为值得支持以及更广泛的影响审查标准。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
pyTCR: A comprehensive and scalable solution for TCR-Seq data analysis to facilitate reproducibility and rigor of immunogenomics research.
  • DOI:
    10.3389/fimmu.2022.954078
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    7.3
  • 作者:
    Peng, Kerui;Moore, Jaden;Vahed, Mohammad;Brito, Jaqueline;Kao, Guoyun;Burkhardt, Amanda M.;Alachkar, Houda;Mangul, Serghei
  • 通讯作者:
    Mangul, Serghei
Systematic evaluation of transcriptomics-based deconvolution methods and references using thousands of clinical samples
  • DOI:
    10.1093/bib/bbab265
  • 发表时间:
    2021-08-04
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Nadel, Brian B.;Oliva, Meritxell;Mangul, Serghei
  • 通讯作者:
    Mangul, Serghei
RNA-seq data science: From raw data to effective interpretation.
  • DOI:
    10.3389/fgene.2023.997383
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Deshpande, Dhrithi;Chhugani, Karishma;Chang, Yutong;Karlsberg, Aaron;Loeffler, Caitlin;Zhang, Jinyang;Muszynska, Agata;Munteanu, Viorel;Yang, Harry;Rotman, Jeremy;Tao, Laura;Balliu, Brunilda;Tseng, Elizabeth;Eskin, Eleazar;Zhao, Fangqing;Mohammadi, Pejman;Labaj, Pawel P.;Mangul, Serghei
  • 通讯作者:
    Mangul, Serghei
Unlocking capacities of genomics for the COVID-19 response and future pandemics.
  • DOI:
    10.1038/s41592-022-01444-z
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    48
  • 作者:
    Knyazev, Sergey;Chhugani, Karishma;Sarwal, Varuni;Ayyala, Ram;Singh, Harman;Karthikeyan, Smruthi;Deshpande, Dhrithi;Baykal, Pelin Icer;Comarova, Zoia;Lu, Angela;Porozov, Yuri;Vasylyeva, Tetyana, I;Wertheim, Joel O.;Tierney, Braden T.;Chiu, Charles Y.;Sun, Ren;Wu, Aiping;Abedalthagafi, Malak S.;Pak, Victoria M.;Nagaraj, Shivashankar H.;Smith, Adam L.;Skums, Pavel;Pasaniuc, Bogdan;Komissarov, Andrey;Mason, Christopher E.;Bortz, Eric;Lemey, Philippe;Kondrashov, Fyodor;Beerenwinkel, Niko;Lam, Tommy Tsan-Yuk;Wu, Nicholas C.;Zelikovsky, Alex;Knight, Rob;Crandall, Keith A.;Mangul, Serghei
  • 通讯作者:
    Mangul, Serghei
A comprehensive benchmarking of WGS-based deletion structural variant callers
  • DOI:
    10.1093/bib/bbac221
  • 发表时间:
    2022-06-27
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Sarwal,Varuni;Niehus,Sebastian;Mangul,Serghei
  • 通讯作者:
    Mangul,Serghei
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Serghei Mangul其他文献

Serghei Mangul的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Serghei Mangul', 18)}}的其他基金

RCN-UBE: Sustainable, nationwide network to promote reproducible big-data analysis in biology programs within community colleges and minority-serving institutions
RCN-UBE:可持续的全国性网络,旨在促进社区大学和少数族裔服务机构内生物学项目的可重复大数据分析
  • 批准号:
    2316223
  • 财政年份:
    2023
  • 资助金额:
    $ 74.43万
  • 项目类别:
    Standard Grant
EAGER: Developing a framework to identify and mitigate perceptual and technical barriers in code sharing to facilitate reproducible and transparent research
EAGER:开发一个框架来识别和减轻代码共享中的感知和技术障碍,以促进可重复和透明的研究
  • 批准号:
    2135954
  • 财政年份:
    2021
  • 资助金额:
    $ 74.43万
  • 项目类别:
    Standard Grant

相似国自然基金

发展高效一步酶法策略研究三阴性乳腺癌潜在粘蛋白寡糖修饰的药物靶点
  • 批准号:
    22307127
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
复杂壁湍流相干结构时空发展演化机理与人工智能高效复合减阻策略的实验研究
  • 批准号:
    12332017
  • 批准年份:
    2023
  • 资助金额:
    239 万元
  • 项目类别:
    重点项目
面向可移动设备和可持续发展目标的新型超高效柔性多结太阳能电池的基础问题研究
  • 批准号:
    62211540010
  • 批准年份:
    2022
  • 资助金额:
    20 万元
  • 项目类别:
发展基于硫代环丙烯酮和基于多氟代芳基叠氮的高效生物正交反应及其应用
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目
促进我国发电侧高效清洁发展的多市场耦合优化与机制研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目

相似海外基金

Developing and enabling efficient hypothesis test for response-adaptive design with patient benefit goals
开发并启用有效的假设检验,以实现具有患者利益目标的响应自适应设计
  • 批准号:
    MR/Z503538/1
  • 财政年份:
    2024
  • 资助金额:
    $ 74.43万
  • 项目类别:
    Research Grant
Developing efficient and non-transgenic transformation methods for sterile and/or recalcitrant crops
开发针对不育和/或顽固作物的高效非转基因转化方法
  • 批准号:
    10107465
  • 财政年份:
    2024
  • 资助金额:
    $ 74.43万
  • 项目类别:
    Launchpad
Developing the world’s 1st scalable, end-to-end system for cost-efficient, sustainable cultivated pork meat production
开发世界上第一个可扩展的端到端系统,以实现经济高效、可持续的养殖猪肉生产
  • 批准号:
    10079403
  • 财政年份:
    2024
  • 资助金额:
    $ 74.43万
  • 项目类别:
    Collaborative R&D
Developing CRISPR Prime Editing for highly efficient precise gene editing
开发 CRISPR Prime 编辑以实现高效精确的基因编辑
  • 批准号:
    DE230101081
  • 财政年份:
    2023
  • 资助金额:
    $ 74.43万
  • 项目类别:
    Discovery Early Career Researcher Award
Optimal Technology Policies for Achieving Efficient Economic Development in Developing Countries
发展中国家实现高效经济发展的最佳技术政策
  • 批准号:
    23KJ0715
  • 财政年份:
    2023
  • 资助金额:
    $ 74.43万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了