Collaborative Research: Extreme Thermal Transport Events in Supersonic and Hypersonic Shock Wave-Turbulence Interactions
合作研究:超音速和高超音速冲击波-湍流相互作用中的极端热传输事件
基本信息
- 批准号:2041618
- 负责人:
- 金额:$ 24.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
High-speed flows near or exceeding the speed of sound causes intense aerodynamic heating, which requires sophisticated thermal protection systems. The high temperatures combined with extreme flow events, such as shock waves and turbulence, reduce the life of propulsion devices, such as gas turbine engines, high performance aircraft aero-engines, scramjets, rockets, lift-off and reentry vehicles, among others. The project will address complex thermal transport processes during the interactions of shock wave and turbulence with the goal of enabling safer and more reliable aero-propulsion engines. Fundamental understanding will be promoted, along with training, teaching, and learning by means of parallel education/outreach components, such as incorporation of findings in graduate education, and presentations in symposia and conferences. Women, minority students, and undergraduate students will also participate, as well as both teachers and students from local high schools. This project seeks to improve the understanding of thermal turbulence transport by considering: (a) effects of shock wave mode, angle, orientation, and strength, and the sources and modes of shock wave unsteadiness which alter thermal transport and surface heat transfer, (b) the means whereby shock wave unsteadiness alters and propagates into subsonic boundary layer regions to affect near-wall thermal transport mechanisms and surface heat transfer, (c) effects of the strength and relative size of shock wave induced separation on thermal transport, (d) effects of shock wave compression heating, viscous friction heating, and conversion of kinetic energy to internal energy on thermal transport, and (e) resulting alterations to turbulence and scalar fluxes, second order turbulent quantities, and coherence and time lag distributions. Unsteady motions of different types of shock waves and unsteady, spatially-varying surface heat transfer and thermal transport will be considered through a coordinated experimental-computational study. A newly developed supersonic wind tunnel system will be employed, along with large eddy simulations, to provide detailed flow and thermal field characteristics. Crucial causal relationships will be clarified through understanding of: (i) associated thermal transport characteristics, (ii) spatially-dependent and frequency-dependent coherence and time lag between events at different flow conditions, (iii) highly-resolved experimental visualizations of unsteady flow features from which quantitative flow information will be determined, and (iv) spatio-temporal flow and thermal field-data from numerical predictions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
高速流附近或超过声音速度会导致强烈的空气动力学加热,这需要复杂的热保护系统。高温结合了极端流动事件,例如冲击波和湍流,降低了推进装置的寿命,例如燃气轮机发动机,高性能飞机航空发动机,Scramjets,Scramjets,火箭,升降机和重新进入车辆等。该项目将在冲击波和湍流相互作用期间解决复杂的热传输过程,以实现更安全,更可靠的航空螺旋引擎。基本的理解将通过平行教育/外展成分,例如在研究生教育中纳入发现,以及在座谈会和会议中的演讲,从而促进,教学和学习。妇女,少数族裔学生和本科生也将参加,以及当地高中的老师和学生。该项目旨在通过考虑通过考虑:冲击波模式,角度,方向和强度的影响以及冲击波不稳定的源和模式改变热传输和表面热传递的源,(b)冲击波不稳定,冲击波动不稳定,并将相对尺寸的相对尺寸转移到近距离传热范围(c),这种手段是近距离传热型(b)对热传输的分离,(d)冲击波压缩加热,粘性摩擦加热以及动能到内部能量在热传输上的转化,以及(e)导致湍流和标量通量,二阶湍流数量以及相干性和时间滞后分布的改变。不同类型的冲击波和不稳定的,空间变化的表面传热和热运输的不稳定运动将通过协调的实验计算研究来考虑。将采用新开发的超音速风洞系统,以及大型涡流模拟,以提供详细的流量和热场特征。 Crucial causal relationships will be clarified through understanding of: (i) associated thermal transport characteristics, (ii) spatially-dependent and frequency-dependent coherence and time lag between events at different flow conditions, (iii) highly-resolved experimental visualizations of unsteady flow features from which quantitative flow information will be determined, and (iv) spatio-temporal flow and thermal field-data from numerical predictions.This award reflects NSF的法定使命,并使用基金会的知识分子优点和更广泛的影响审查标准来评估值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Measurement and Determination of Local Film Cooling Performance Along a Transonic Turbine Blade Tip With Viscous Dissipation
具有粘性耗散的跨音速涡轮叶尖局部气膜冷却性能的测量和确定
- DOI:10.1088/1361-6501/ac543d
- 发表时间:2022
- 期刊:
- 影响因子:2.4
- 作者:P. M. Ligrani, H. Collopy
- 通讯作者:P. M. Ligrani, H. Collopy
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Phillip Ligrani其他文献
Particulate Deposition Effects on Internal Swirl Cooling of Turbine Blades
颗粒沉积对涡轮叶片内部涡流冷却的影响
- DOI:
10.1115/1.4056264 - 发表时间:
2022-11 - 期刊:
- 影响因子:0
- 作者:
Xing Yang;Zihan Hao;Florian Seibold;Zhenping Feng;Phillip Ligrani;Bernhard Weig - 通讯作者:
Bernhard Weig
Experimental and numerical investigation of jet impingement cooling onto a rib roughened concave internal passage for leading edge cooling of a gas turbine blade
- DOI:
10.1016/j.ijheatmasstransfer.2024.125572 - 发表时间:
2024-08-01 - 期刊:
- 影响因子:
- 作者:
Marius Forster;Phillip Ligrani;Bernhard Weigand;Rico Poser - 通讯作者:
Rico Poser
Experimental and numerical investigation of unsteady impingement cooling within a blade leading edge passage
叶片前缘通道内非稳态冲击冷却的实验和数值研究
- DOI:
10.1016/j.ijheatmasstransfer.2013.12.006 - 发表时间:
2014-04 - 期刊:
- 影响因子:5.2
- 作者:
Li Yang;JIng Ren;Hongde Jiang;Phillip Ligrani - 通讯作者:
Phillip Ligrani
Phillip Ligrani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Phillip Ligrani', 18)}}的其他基金
Collaborative Research: Thermal Transport in Elastic Turbulence
合作研究:弹性湍流中的热传输
- 批准号:
1501587 - 财政年份:2014
- 资助金额:
$ 24.91万 - 项目类别:
Standard Grant
Collaborative Research: Thermal Transport in Elastic Turbulence
合作研究:弹性湍流中的热传输
- 批准号:
1336085 - 财政年份:2013
- 资助金额:
$ 24.91万 - 项目类别:
Standard Grant
GOALI: Surface Heat Transfer, Surface Skin Friction, and a Reynolds Analogy for Flows Over Surfaces with Real Component Roughness
GOALI:表面传热、表面蒙皮摩擦以及具有真实组件粗糙度的表面流动的雷诺类比
- 批准号:
0086011 - 财政年份:2001
- 资助金额:
$ 24.91万 - 项目类别:
Standard Grant
Effects of Flow Pulsations from Potential flow Interactions and Shock Waves on Film Cooling as Applied to Gas Turbine Engines.
势流相互作用和冲击波产生的流量脉动对应用于燃气轮机发动机的气膜冷却的影响。
- 批准号:
9615196 - 财政年份:1997
- 资助金额:
$ 24.91万 - 项目类别:
Standard Grant
相似国自然基金
固相荧光内滤用于极端条件下砷、硫、碘等易变价离子的现场分析研究
- 批准号:22376144
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
极端气候事件的牧户行为响应与发展韧性研究:基于支持政策视角
- 批准号:72373145
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
极端隧道条件下动车组车内压力波动建模及强化学习控制研究
- 批准号:52372402
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
极端团队的工作特征与团队韧性研究:基于认知与情绪的双通路机制
- 批准号:72302214
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
极端降雨条件下浅层黄土边坡中径流和入渗的水量分配规律及机制研究
- 批准号:42307235
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
- 批准号:
2331294 - 财政年份:2024
- 资助金额:
$ 24.91万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 24.91万 - 项目类别:
Standard Grant
Collaborative Research: What Drives the Most Extreme Rainstorms in the Contiguous United States (US)?
合作研究:美国本土遭遇最极端暴雨的原因是什么?
- 批准号:
2337381 - 财政年份:2024
- 资助金额:
$ 24.91万 - 项目类别:
Standard Grant
Collaborative Research: What Drives the Most Extreme Rainstorms in the Contiguous United States (US)?
合作研究:美国本土遭遇最极端暴雨的原因是什么?
- 批准号:
2337380 - 财政年份:2024
- 资助金额:
$ 24.91万 - 项目类别:
Continuing Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
- 批准号:
2331295 - 财政年份:2024
- 资助金额:
$ 24.91万 - 项目类别:
Standard Grant