CPS: Medium: Correct-by-Construction Controller Synthesis using Gaussian Process Transfer Learning
CPS:中:使用高斯过程迁移学习的构造校正控制器综合
基本信息
- 批准号:2039062
- 负责人:
- 金额:$ 120万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project proposes a novel and rigorous methodology for the design of embedded control software for safety-critical cyber-physical systems (CPS) with complex and possibly unknown dynamics by embracing ideas from control theory, formal verification in computer science, and Gaussian processes (GPs) from machine learning. Embedded control software forms the main core of autonomous transportation, traffic networks, power networks, aerospace systems, and health and assisted living. These applications are examples of CPS, wherein software components interact tightly with physical systems with complex dynamics. Recent technological advances in sensing, memory, and communication technology offer unprecedented opportunities for ubiquitously collecting data at high details and large scales for CPS. Utilization of data at these scales poses major challenges for a rigorous analysis and design of CPS, particularly in view of the additional inherent uncertainty that data-driven control signals introduce to systems behavior. In fact, this effect has not been well understood to this date, primarily due to the missing link between data analytic techniques in machine learning and the underlying physics of dynamical systems in a rigorous system design. In addition, most of the existing results proposed in the literature on the formal verification or synthesis of CPS are model-based, whereas in many applications, a model may not be always available or may be too complex for current techniques. This project investigates a novel correct-by-construction controller synthesis scheme for CPS with complex and possibly unknown dynamics by embracing ideas from the GPs. Particularly, given temporal logic requirements (e.g. those expressed as linear temporal logic formula or by omega-regular languages) for the CPS, they will be decomposed to simpler reachability tasks based on the types of automata representing those properties. Then, the project develops an approach to solve those simpler tasks by computing so-called control barrier functions together with their corresponding hybrid controllers using regressed GPs of the unknown CPS. In addition, the investigators develop an adaptive transfer learning approach that leverages previously learned GPs and emploies them as sources of information in learning new ones especially when limited training data are available. The project develops a scheme on either transferring the controllers designed for old GPs to new ones or safely modifying them on the fly while formally guaranteeing their correctness for the new GPs. The algorithms are implemented into design software tools and evaluated on actual CPS platforms, namely, autonomous underwater vehicles and aerial robots.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目提出了一种新颖而严格的方法,通过采用控制理论、计算机科学中的形式验证和高斯过程(GP)的思想,为具有复杂且可能未知动态的安全关键网络物理系统(CPS)设计嵌入式控制软件。 )来自机器学习。嵌入式控制软件构成了自主交通、交通网络、电力网络、航空航天系统以及健康和辅助生活的主要核心。这些应用程序是 CPS 的示例,其中软件组件与具有复杂动态的物理系统紧密交互。传感、存储和通信技术方面的最新技术进步为 CPS 普遍收集高细节和大规模数据提供了前所未有的机会。这些规模的数据利用给 CPS 的严格分析和设计带来了重大挑战,特别是考虑到数据驱动的控制信号给系统行为带来的额外的固有不确定性。事实上,迄今为止,这种效应还没有得到很好的理解,主要是由于机器学习中的数据分析技术与严格的系统设计中动力系统的底层物理之间缺少联系。此外,文献中提出的关于 CPS 形式验证或综合的大多数现有结果都是基于模型的,而在许多应用中,模型可能并不总是可用,或者对于当前技术来说可能过于复杂。该项目通过采纳 GP 的想法,研究了一种新颖的构建校正控制器综合方案,用于具有复杂且可能未知的动态的 CPS。特别是,给定 CPS 的时序逻辑要求(例如,表示为线性时序逻辑公式或欧米伽正则语言的要求),它们将根据表示这些属性的自动机类型被分解为更简单的可达性任务。然后,该项目开发了一种方法,通过使用未知 CPS 的回归 GP 计算所谓的控制屏障函数及其相应的混合控制器来解决这些更简单的任务。此外,研究人员还开发了一种自适应迁移学习方法,该方法利用先前学习的 GP 并将其用作学习新 GP 的信息来源,尤其是在可用的训练数据有限的情况下。该项目开发了一种方案,可以将为旧 GP 设计的控制器转移到新控制器上,或者动态地安全地修改它们,同时正式保证它们对于新 GP 的正确性。这些算法被实施到设计软件工具中,并在实际的 CPS 平台(即自主水下航行器和空中机器人)上进行评估。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Synergistic Offline-Online Control Synthesis via Local Gaussian Process Regression
- DOI:10.1109/cdc45484.2021.9683557
- 发表时间:2021-10
- 期刊:
- 影响因子:0
- 作者:John Jackson;L. Laurenti;E. Frew;Morteza Lahijanian
- 通讯作者:John Jackson;L. Laurenti;E. Frew;Morteza Lahijanian
Formal Synthesis of Safety Controllers for Unknown Systems Using Gaussian Process Transfer Learning
- DOI:10.1109/lcsys.2023.3341548
- 发表时间:2023
- 期刊:
- 影响因子:3
- 作者:A. Awan;Majid Zamani
- 通讯作者:A. Awan;Majid Zamani
Transfer Learning for Barrier Certificates
- DOI:10.1109/cdc49753.2023.10384302
- 发表时间:2023-12
- 期刊:
- 影响因子:0
- 作者:Alireza Nadali;Ashutosh Trivedi;Majid Zamani
- 通讯作者:Alireza Nadali;Ashutosh Trivedi;Majid Zamani
Formal Abstraction of General Stochastic Systems via Noise Partitioning
通过噪声划分对一般随机系统进行形式化抽象
- DOI:10.1109/lcsys.2023.3340621
- 发表时间:2023
- 期刊:
- 影响因子:3
- 作者:Skovbekk, John;Laurenti, Luca;Frew, Eric;Lahijanian, Morteza
- 通讯作者:Lahijanian, Morteza
Towards Safe AI: Sandboxing DNNs-Based Controllers in Stochastic Games
- DOI:10.1609/aaai.v37i12.26789
- 发表时间:2023-06
- 期刊:
- 影响因子:0
- 作者:Bingzhuo Zhong;H. Cao;Majid Zamani;M. Caccamo
- 通讯作者:Bingzhuo Zhong;H. Cao;Majid Zamani;M. Caccamo
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Majid Zamani其他文献
Reliable CPS Design for Mitigating Semiconductor and Battery Aging in Electric Vehicles
用于缓解电动汽车半导体和电池老化的可靠 CPS 设计
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Wanli Chang;Alma Pröbstl;Dip Goswami;Majid Zamani;S. Chakraborty - 通讯作者:
S. Chakraborty
A Set-based Approach for Synthesizing Controllers Enforcing ω-Regular Properties over Uncertain Linear Control Systems
一种基于集合的方法,用于在不确定线性控制系统上强制执行 ω-正则特性的综合控制器
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Bingzhuo Zhong;Majid Zamani;M. Caccamo - 通讯作者:
M. Caccamo
AMYTISS: a parallelized tool on automated controller synthesis for large-scale stochastic systems
AMYTISS:大规模随机系统自动控制器综合的并行工具
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Abolfazl Lavaei;Mahmoud Khaled;S. Soudjani;Majid Zamani - 通讯作者:
Majid Zamani
Compositional Synthesis of Finite Abstractions for Networks of Systems: A Dissipativity Approach
系统网络有限抽象的组合综合:耗散性方法
- DOI:
10.1145/3178126.3187000 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Abdalla Swikir;A. Girard;Majid Zamani - 通讯作者:
Majid Zamani
Bisimilar symbolic models for stochastic control systems without state-space discretization
无状态空间离散化随机控制系统的双相似符号模型
- DOI:
10.1145/2562059.2562115 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Majid Zamani;I. Tkachev;A. Abate - 通讯作者:
A. Abate
Majid Zamani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Majid Zamani', 18)}}的其他基金
CAREER: A Data-Driven Approach for Verification and Control of Cyber-Physical Systems
职业:用于验证和控制网络物理系统的数据驱动方法
- 批准号:
2145184 - 财政年份:2022
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
Secure-by-Construction Controller Synthesis for Cyber-Physical Systems
信息物理系统的安全构建控制器综合
- 批准号:
2015403 - 财政年份:2020
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
An Entropy Approach to Invariance and Reachability of Uncertain Control Systems with Limited Information
有限信息不确定控制系统不变性和可达性的熵方法
- 批准号:
2013969 - 财政年份:2020
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
相似国自然基金
复合低维拓扑材料中等离激元增强光学响应的研究
- 批准号:12374288
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
- 批准号:42305004
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于挥发性分布和氧化校正的大气半/中等挥发性有机物来源解析方法构建
- 批准号:42377095
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于机器学习和经典电动力学研究中等尺寸金属纳米粒子的量子表面等离激元
- 批准号:22373002
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
托卡马克偏滤器中等离子体的多尺度算法与数值模拟研究
- 批准号:12371432
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
- 批准号:
2321102 - 财政年份:2024
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
RII Track-4:@NASA: Bluer and Hotter: From Ultraviolet to X-ray Diagnostics of the Circumgalactic Medium
RII Track-4:@NASA:更蓝更热:从紫外到 X 射线对环绕银河系介质的诊断
- 批准号:
2327438 - 财政年份:2024
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
- 批准号:
2344489 - 财政年份:2024
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
- 批准号:
2402836 - 财政年份:2024
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
- 批准号:
2402851 - 财政年份:2024
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant