Collaborative Research: Elucidating Correlations Between Solvation Structure and Electrochemical Behavior of Water-in-Salt Electrolytes for Highly Reversible Zinc Metal Anode

合作研究:阐明高度可逆锌金属阳极的盐包水电解质的溶剂化结构与电化学行为之间的相关性

基本信息

  • 批准号:
    2038366
  • 负责人:
  • 金额:
    $ 27.22万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-03-01 至 2025-02-28
  • 项目状态:
    未结题

项目摘要

Renewable energy from wind energy and solar power offers a solution to reducing greenhouse gas emissions and their impact on climate change. Unfortunately, the power that can be generated from these renewable sources is intermittent and typically asynchronous with electrical energy demand. Thus, large-scale energy storage is indispensable for a sustainable economy with reduced reliance on fossil fuels. Representing a promising solution to this energy storage need, aqueous zinc (Zn) metal batteries can store energy at a low cost, with low environmental footprint and high intrinsic safety. However, Zn metal batteries suffer from short cycle life, primarily due to corrosion of the Zn metal anode by water. This corrosion drastically curtails the cycle life of Zn metal batteries and causes a safety concern due to the generation of explosive hydrogen gas—two challenges that require outside-the-box solutions. The recent emergence of highly concentrated “water-in-salt” electrolytes offers a unique opportunity to re-define the stability between the Zn metal anode and the aqueous electrolyte. This project seeks to transform the cyclic stability and increase safe operation of aqueous Zn metal batteries. If successful, this will mark a significant breakthrough for energy storage technologies in the United States. For educational impacts, the investigators will leverage institutional programs their universities to increase the participation of community college students and high school students in summer research experiences. The training of graduate and undergraduate students will feed the workforce need of the next-generation energy sector. The project will elucidate the water stability properties in extremely concentrated solutions by integrating research activities in materials electrochemistry, femtosecond Raman spectroscopy, and ab initio computation. These complementary methods are highly synergistic, providing insights from different vantage points that when integrated can enable deep understanding. In the concentrated electrolytes of study there are few water molecules per solvated ion; therefore, the solvation sheaths are often thinner or incomplete compared to standard dilute solutions. Such solvation structures significantly alter the properties of the solvated ions and the dynamic water molecules as a solvent. Preliminary results have revealed that water molecules exhibit unusually high electrochemical stability against hydrogen evolution and display an intriguing blueshift of vibrational frequencies in stimulated Raman studies. First-principles calculations indicate that there exist peculiar properties of water molecules to be explored in these concentrated solutions. This project will generate an in-depth understanding of the correlation between solvation structures of the concentrated electrolytes and the corresponding stability in contact with the Zn metal anode. The values of such knowledge will transcend different disciplines of physical sciences and engineering and impact a broad range of STEM learners and practitioners in academic and industrial settings.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
风能和太阳能产生的可再生能源为减少温室气体排放及其对气候变化的影响提供了解决方案。不幸的是,可以从这些可再生能源中产生的功率是间歇性的,通常与电能需求异步。这对于可持续经济的大规模储能是必不可少的,而对化石燃料的依赖减少了。代表了对这种能量储能需求的有希望的解决方案,水性锌(Zn)金属电池可以以低成本的价格存储能量,并且具有低环境足迹和高内在安全性。但是,锌金属电池的周期寿命短,由于水对锌金属阳极的腐蚀而产生的主要寿命。这种腐蚀大大减少了锌金属电池的循环寿命,并由于产生爆炸性氢气而引起了安全问题,这是需要开箱即用的解决方案的两个挑战。最近高度浓缩的“盐水”电解质的出现提供了一个独特的机会,可以重新定义Zn金属阳极和水解物之间的稳定性。该项目旨在改变循环稳定性并增加水溶液金属电池的安全操作。如果成功,这将标志着美国的能源储能技术的重大突破。对于教育影响,研究人员将利用其大学的机构计划来增加社区大学生和高中生参与夏季研究经验。研究生和本科生的培训将满足下一代能源领域的劳动力需求。该项目将通过整合材料电化学,飞秒拉曼光谱和从头开始计算中的研究活动,从而阐明极度集中溶液中的水稳定性。这些互补的方法是高度协同的,从不同的有利位置提供了见解,这些洞察力可以使人们能够深入理解。在研究的浓缩电解质中,每个求解的离子几乎没有水分子。因此,与标准稀释溶液相比,溶液鞘通常更薄或不完整。这样的溶液结构显着改变了溶液离子的性能和动态水分子作为溶液。初步结果表明,在刺激的拉曼研究中,水分子暴露于针对氢进化的异常高的电化学稳定性,并显示出有趣的振动频率的蓝光。第一原理计算表明,在这些浓缩溶液中探索的水分子的特性特性。该项目将深入了解浓缩电解质的溶液结构与与Zn金属阳极接触的相应稳定性之间的相关性。这种知识的价值将超越物理科学和工程学的不同学科,并在学术和工业环境中影响广泛的STEM学习者和从业人员。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子优点和更广泛的审查标准来评估通过评估来获得支持的。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Chloride electrolyte enabled practical zinc metal battery with a near-unity Coulombic efficiency
  • DOI:
    10.1038/s41893-023-01092-x
  • 发表时间:
    2023-03-23
  • 期刊:
  • 影响因子:
    27.6
  • 作者:
    Jiang, Heng;Tang, Longteng;Ji, Xiulei
  • 通讯作者:
    Ji, Xiulei
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Greaney其他文献

Peter Greaney的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Greaney', 18)}}的其他基金

Collaborative Research: Elucidation of the Grotthuss Topochemistry in Reticular Electrodes for Fast Proton Batteries
合作研究:阐明快速质子电池网状电极中的 Grotthuss 拓扑化学
  • 批准号:
    2005165
  • 财政年份:
    2020
  • 资助金额:
    $ 27.22万
  • 项目类别:
    Continuing Grant
Collaborative Research: Computational Design of Metal-Organic Framework Materials
合作研究:金属有机框架材料的计算设计
  • 批准号:
    1663360
  • 财政年份:
    2017
  • 资助金额:
    $ 27.22万
  • 项目类别:
    Standard Grant
Engineering Smart Thermal Properties in Metal-Organic-Frameworks
金属有机框架中的工程智能热性能
  • 批准号:
    1403423
  • 财政年份:
    2014
  • 资助金额:
    $ 27.22万
  • 项目类别:
    Standard Grant

相似国自然基金

基于ipRGCs功能的定量评估阐明其与儿童近视发病风险关联的前瞻性队列研究
  • 批准号:
    81803258
  • 批准年份:
    2018
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
结合影像质谱技术、代谢及脂质组学研究阐明黄芩调控胆固醇代谢转化机理
  • 批准号:
    81503222
  • 批准年份:
    2015
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
合成生物学在阐明药物代谢酶及转运体相互关系研究中的应用
  • 批准号:
    81473278
  • 批准年份:
    2014
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
利用表面离子共振技术模拟白细胞穿越血管内皮(TEM)过程,阐明CD47调节白细胞TEM机制的研究
  • 批准号:
    81302611
  • 批准年份:
    2013
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
以星形胶质细胞为靶点阐明慢性疼痛机制:DREAM信号通路的研究
  • 批准号:
    31070974
  • 批准年份:
    2010
  • 资助金额:
    37.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Elucidating High Temperature Deformation Mechanisms in Refractory Multi-Principal-Element Alloys
合作研究:阐明难熔多主元合金的高温变形机制
  • 批准号:
    2313860
  • 财政年份:
    2023
  • 资助金额:
    $ 27.22万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Elucidating Design Rules for non-NRPS Incorporation of Amino Acids on Polyketide Scaffolds
合作研究:RUI:阐明聚酮化合物支架上非 NRPS 氨基酸掺入的设计规则
  • 批准号:
    2300890
  • 财政年份:
    2023
  • 资助金额:
    $ 27.22万
  • 项目类别:
    Continuing Grant
Collaborative Research: RUI: Elucidating Design Rules for non-NRPS Incorporation of Amino Acids on Polyketide Scaffolds
合作研究:RUI:阐明聚酮化合物支架上非 NRPS 氨基酸掺入的设计规则
  • 批准号:
    2300891
  • 财政年份:
    2023
  • 资助金额:
    $ 27.22万
  • 项目类别:
    Continuing Grant
Collaborative Research: MRA: Elucidating the multi-dimensionality and scaling of avian diversity-vegetation relationships
合作研究:MRA:阐明鸟类多样性与植被关系的多维性和尺度
  • 批准号:
    2307188
  • 财政年份:
    2023
  • 资助金额:
    $ 27.22万
  • 项目类别:
    Standard Grant
Collaborative Research: Elucidating the Role of Natural Aerosols in Modulating Boundary Layer Clouds and Precipitation in the Southern Ocean
合作研究:阐明天然气溶胶在调节南大洋边界层云和降水中的作用
  • 批准号:
    2246489
  • 财政年份:
    2023
  • 资助金额:
    $ 27.22万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了