Collaborative Research: Magnetic mapping of bio-inspired clusters of iron oxide nanoparticles

合作研究:仿生氧化铁纳米粒子簇的磁力测绘

基本信息

  • 批准号:
    2038055
  • 负责人:
  • 金额:
    $ 39.04万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-04-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

Man-made iron oxide nanoparticles have widespread importance for labeling cells and molecules both inside and outside the human body. Besides synthetic particles, many organisms also generate naturally occurring iron oxide nanoparticles, known as ferritin, to store and regulate iron within their bodies. Whether man-made or natural, these iron oxide nanoparticles have a magnetization that can be used as a tool for manipulation or sensing in biological environments. However, nanoparticles often aggregate in complex bio-environments, and the effect of aggregation on their collective magnetic properties is not well understood. The overall objective of this work is to explore the relationship between nanoparticle clustering and resultant magnetic properties. Findings from this work can be potentially used to engineer magnetism-based sensing tools for more accurately tracking iron nanoparticles in biological systems. Data from this project can also advance other biomedical applications of iron oxide particles, such as their uses in magnetic hyperthermia for cancer therapy or as contrast agents for medical imaging. Besides advancing the field of bio-magnetism and nano-biotechnology, this research project will help train the next generation of scientists and engineers by providing research experience to students in state-of-the-art techniques for synthesis and characterization of nanoparticles, by enhancing infrastructure for research and education through the development of new techniques for magnetic characterization and by broadening participation of underrepresented groups in science and engineering activities. Iron-oxide nanoparticles have become crucial tools in biomedicine and bio-nanotechnology due to their magnetic behavior. These include synthetic magnetite nanoparticles (~5 to 10 nm in diameter), and naturally occurring ferrihydrite core (~ 5 to 8 nm) present in ferritin, the largest iron-storage protein in the human body. Determining the spatial localization and quantification of these iron-oxide nanoparticles in cells and tissues is critical for a number of applications in health. Thus far our ability to characterize the spatial distribution and quantity of iron oxide nanoparticles is limited to biochemical approaches like histochemical staining, which are largely qualitative. Magnetically sensitive detection offers an alternative, non-destructive, label free and quantitative means for characterization of iron-oxide nanoparticles. However, in biological systems, nanoparticles are often found in aggregates/clusters, which can impact their local and global magnetic properties and complicate interpretation of magnetic signals. The goal of this project is to understand how clustering of bio-inspired iron-oxide nanoparticles affect their magnetic properties across many length scales (nanometer to micrometer scale). Specifically, interactions between individual particles, as well as between larger clusters of particles, will be studied using a range of magnetically sensitive techniques. Biologically derived clusters of particles as well as artificially engineered aggregates will be used for the study. These include synthetic magnetite nanoparticles and naturally occurring ferrihydrite cores present in ferritin. In some cases, clusters will be nanofabricated using template guided assembly, so that geometric parameters of clusters such as size, shape, and interparticle distance can be varied systematically. Characterization of particle assemblies will be performed using techniques such as analytical electron microscopy, magnetic force microscopy, super-conducting quantum interference device magnetometry and magnetic resonance imaging. Results from this study will be used to develop advanced, magnetism-based metrology for localizing and quantifying aggregates of iron oxide nanoparticles in biological environments. An understanding of the effect of clustering on magnetic properties can enable quantitative histo-magnetic detection schemes for mapping iron deposits in tissue sections. The project activities will be accomplished by providing multidisciplinary and inter-institutional research experiences for graduate and undergraduate students and by establishing new research collaborations. The project will also include outreach efforts to broaden participation, by developing and offering hands-on workshops on engineering concepts to under-privileged middle school students at a local school.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人为的氧化铁纳米颗粒对于在人体内部和外部标记细胞和分子具有广泛的重要性。除合成颗粒外,许多生物还产生天然存在的氧化铁纳米颗粒(称为铁蛋白),以在其体内存储和调节铁。无论是人造的还是天然的,这些氧化铁纳米颗粒具有磁化化,可用作在生物环境中操纵或感测的工具。然而,纳米颗粒通常在复杂的生物环境中聚集,而聚集对其集体磁性特性的影响尚不清楚。这项工作的总体目的是探索纳米颗粒聚类与所得磁性特性之间的关系。这项工作的发现可能用于设计基于磁性的传感工具,以更准确地跟踪生物系统中的铁纳米颗粒。该项目的数据还可以推进氧化铁颗粒的其他生物医学应用,例如它们在磁性高温中用于癌症治疗或作为医学成像的对比剂。除了促进生物磁学和纳米生物技术领域外,该研究项目还将通过向学生提供最新的纳米粒子合成和表征的最先进技术的研究经验来帮助培训下一代的科学家和工程师,从而通过对新技术的发展进行研究和通过磁性的参与进行研究和教育,从而增强基础设施和教育,并通过磁性地进行启动和扩展。 铁氧化物纳米颗粒由于其磁性行为而成为生物医学和生物纳米技术的关键工具。其中包括合成磁铁矿纳米颗粒(直径约5至10 nm),以及天然存在的铁素核心(〜5至8 nm),是铁蛋白(人体中最大的铁储存蛋白)中存在的。确定细胞和组织中这些铁氧化纳米颗粒的空间定位和定量对于许多在健康中的应用至关重要。到目前为止,我们表征氧化铁纳米颗粒的空间分布和数量的能力仅限于生化方法,例如组织化学染色,这些方法在很大程度上是定性的。磁敏感的检测提供了一种替代性,无损,无标记和定量的手段,用于表征铁氧化纳米颗粒。但是,在生物系统中,通常在聚集体/簇中发现纳米颗粒,这可能会影响其局部和全局磁性特性并使磁信号的解释复杂化。该项目的目的是了解生物启发的铁氧化物纳米颗粒的聚类如何影响许多长度尺度(纳米尺度)的磁性特性。具体而言,将使用一系列磁敏感技术研究各个颗粒之间以及较大的颗粒簇之间的相互作用。该研究将使用生物学衍生的颗粒和人工设计的聚集体进行研究。这些包括合成磁铁矿纳米颗粒和铁蛋白中存在的天然铁岩心。在某些情况下,将使用模板引导的组件对群集进行纳米制动,以便可以系统地改变群集的几何参数,例如大小,形状和颗粒间距离。将使用诸如分析电子显微镜,磁力显微镜,超导量子干扰装置磁力测定法和磁共振成像等技术进行粒子组件的表征。这项研究的结果将用于开发基于磁性的高级计量学,用于在生物环境中定位和量化氧化铁纳米颗粒的聚集体。对聚类对磁性特性的影响的理解可以实现定量的组织磁检测方案,以绘制组织切片中的铁沉积。项目活动将通过为研究生和本科生提供多学科和机构间研究经验以及建立新的研究合作来完成。该项目还将包括扩大参与的宣传工作,通过开发和提供有关工程概念的动手讲习班,以在当地一所学校的中学生中为私人的中学生开发。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的审查标准通过评估来通过评估来获得支持的。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Artifacts in Magnetic Force Microscopy of Histological sections
  • DOI:
    10.1016/j.jmmm.2022.170116
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Kevin J. Walsh;Owen Shiflett;Stavan Shah;T. Renner;Nicholas Soulas;D. Scharre;Dana McTigue;G. Agarwal
  • 通讯作者:
    Kevin J. Walsh;Owen Shiflett;Stavan Shah;T. Renner;Nicholas Soulas;D. Scharre;Dana McTigue;G. Agarwal
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gunjan Agarwal其他文献

In vitro efficacy of ciprofloxacin and gentamicin against a biofilm of Pseudomonas aeruginosa and its free-living forms.
环丙沙星和庆大霉素对铜绿假单胞菌生物膜及其自由生活形式的体外功效。
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0.4
  • 作者:
    Gunjan Agarwal;A. Kapil;S. K. Kabra;B. Das;S. Dwivedi
  • 通讯作者:
    S. Dwivedi
Characterization of Pseudomonas aeruginosa isolated from chronically infected children with cystic fibrosis in India
从印度慢性感染囊性纤维化儿童中分离出的铜绿假单胞菌特征
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Gunjan Agarwal;A. Kapil;S. K. Kabra;B. Das;S. Dwivedi
  • 通讯作者:
    S. Dwivedi
Psychological Insulin Resistance in Patients with Type 2 Diabetes.
2 型糖尿病患者的心理胰岛素抵抗。
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Jha;Manju Panda;Surya Kumar;R. Gupta;Archana Neemani;J. Jacob;Nisha Thomas;A. James;S. Waghdhare;Gunjan Agarwal
  • 通讯作者:
    Gunjan Agarwal
Effectiveness of Pictorial Health Warnings on Tobacco Products in Creating Awareness among 15-17 Years Old School Children in Lucknow
烟草产品图片健康警语在提高勒克瑙 15-17 岁学童意识方面的有效性
Arranged Marriage: As an Example of Marginalized Relationships
包办婚姻:边缘化关系的一个例子
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gunjan Agarwal;Gunjan Kapil
  • 通讯作者:
    Gunjan Kapil

Gunjan Agarwal的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gunjan Agarwal', 18)}}的其他基金

Collagen fibril structure, surface charge and vascular calcification
胶原纤维结构、表面电荷和血管钙化
  • 批准号:
    2000469
  • 财政年份:
    2020
  • 资助金额:
    $ 39.04万
  • 项目类别:
    Standard Grant
Indirect MFM for sensing magnetic nanoparticles
用于传感磁性纳米颗粒的间接 MFM
  • 批准号:
    1403574
  • 财政年份:
    2014
  • 资助金额:
    $ 39.04万
  • 项目类别:
    Standard Grant
Modulation of Macro and Micro Mechanics of ECM by DDR1
DDR1对ECM宏观和微观力学的调制
  • 批准号:
    1201111
  • 财政年份:
    2012
  • 资助金额:
    $ 39.04万
  • 项目类别:
    Standard Grant

相似国自然基金

基于π-d杂化策略的铁磁金属颗粒膜界面磁耦合及反常霍尔效应研究
  • 批准号:
    12304134
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
酶活动态可调的磁响应纳米杂化尿酸酶的构建及其体内抗痛风性能研究
  • 批准号:
    32371456
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于磁-热场映射参数解耦辨识的永磁体健康状态监测方法研究
  • 批准号:
    52307048
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于LAMOST中色散光谱和TESS测光巡天精确研究晚型恒星的磁活动性质
  • 批准号:
    12373032
  • 批准年份:
    2023
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
基于磁-热-流耦合的永磁过卷保护装置动态温度场研究
  • 批准号:
    52304177
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
合作研究:用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
  • 批准号:
    2343606
  • 财政年份:
    2024
  • 资助金额:
    $ 39.04万
  • 项目类别:
    Standard Grant
Collaborative Research: Magnetic Clustering using Novel Poly(amino acid) Corrals to Advance Magnetic Particle Imaging
合作研究:利用新型聚氨基酸畜栏进行磁聚类以推进磁粒子成像
  • 批准号:
    2305404
  • 财政年份:
    2023
  • 资助金额:
    $ 39.04万
  • 项目类别:
    Standard Grant
Evaluation of the neurovascular unit in the setting of pathogenesis and treatment of autosomal dominant Alzheimer disease
常染色体显性阿尔茨海默病发病机制和治疗中神经血管单位的评估
  • 批准号:
    10572223
  • 财政年份:
    2023
  • 资助金额:
    $ 39.04万
  • 项目类别:
Collaborative Research: Organized Nanochannel Materials from Biomolecular Magnetic Organic Frameworks-
合作研究:从生物分子磁性有机框架组织纳米通道材料-
  • 批准号:
    2303580
  • 财政年份:
    2023
  • 资助金额:
    $ 39.04万
  • 项目类别:
    Standard Grant
Collaborative Research: Magnetic Clustering using Novel Poly(amino acid) Corrals to Advance Magnetic Particle Imaging
合作研究:利用新型聚氨基酸畜栏进行磁聚类以推进磁粒子成像
  • 批准号:
    2305402
  • 财政年份:
    2023
  • 资助金额:
    $ 39.04万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了