EAGER: QAC: QCH: Holographic Quantum Algorithms for Simulating Many-Body Systems

EAGER:QAC:QCH:用于模拟多体系统的全息量子算法

基本信息

  • 批准号:
    2038032
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-15 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

Nontechnical SummaryAccurately modeling materials is essential for guiding materials discovery and designing advanced electronic devices. However, simulating the quantum-mechanical properties of materials on a microscopic scale poses tremendous computational challenges that often exceed the capabilities of even the most advanced supercomputers. Quantum computers offer a potential means to circumvent these challenges by harnessing the same aspects of quantum physics that make material simulation challenging for conventional computers. While a promising approach, there is a large gap in size and accuracy between quantum computers that can be built with current technology and those needed to make progress on real-world relevant materials challenges.To close this gap, this project will develop quantum software and hardware prototypes in which quantum computations are performed on efficiently compressed quantum data, to dramatically reduce the resources required to simulate large-scale material models. These techniques are dubbed “holographic” as they encode high-dimensional data on a lower-dimensional physical system, much like a hologram. This research will expedite the application of near-term quantum computers, with limited memory and accuracy, to realistic materials and chemical modeling.Technical summaryThis project will develop holographic quantum simulation techniques that indirectly encode the quantum state of a material in an efficiently compressed representation that greatly reduces the number of required qubits, and fundamentally limits the impact of noise and errors. This compression is achieved by an algorithm that alternates between coherent entangling gates and measurement of a selected subset of qubits. This approach represents a dramatic departure from conventional quantum algorithmic frameworks and will require a fundamental rethinking of quantum algorithm and hardware design.This project will conduct research to establish a basic theoretical and experimental proof-of-principle for holographic simulation techniques. Advanced holographic simulation techniques will be developed to treat electronic materials, 2d and 3d models, and compute non-equilibrium electronic and thermal transport and optical spectra relevant for real-world devices. The fundamental capabilities and limitations of holographic representations of quantum states will be rigorously characterized. The project team will fabricate a circuit quantum electrodynamics (cQED) testbed in which a two-level superconducting qubit controls a multi-level superconducting cavity mode. The multi-level cavity mode provides a larger quantum memory than a conventional two-level qubit, and the hybrid qubit/cavity system provides powerful methods to create quantum entanglement. Together, these advantages will enable simulation of more complex material states with the same number of quantum devices compared to conventional qubit-only systems. The project team will demonstrate the developed holographic algorithms on this cQED testbed and benchmark its performance against complementary simulations on commercial quantum computing platforms. Lessons learned from this exploratory phase will be used to design scalable cQED devices for holographic simulations of large-scale problems that exceed the capabilities of current classical supercomputers.This EAGER award by the Division of Materials Research is jointly supported with the Division of Chemistry.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要准确地建模材料对于指导材料发现和设计先进电子设备至关重要,然而,在微观尺度上模拟材料的量子力学特性带来了巨大的计算挑战,即使是最先进的超级计算机也往往无法提供这种能力。潜在的手段是通过利用量子物理学的相同方面来规避这些挑战,这些方面使材料模拟对传统计算机构成挑战。虽然这是一种很有前途的方法,但用当前技术构建的量子计算机在尺寸和精度方面存在很大差距。为了缩小这一差距,该项目将开发量子软件和硬件原型,其中在有效压缩的量子数据上执行量子计算,以大幅减少模拟大型量子计算所需的资源。这些技术被称为“全息”,因为它们在低维物理系统上编码高维数据,就像全息图一样,这项研究将加速近期量子计算机的应用,但内存和精度有限。现实的材料和化学品建模。技术摘要该项目将开发全息量子模拟技术,以有效压缩的表示形式间接编码材料的量子态,从而大大减少所需的量子位数量,并从根本上限制噪声和错误的影响。这种压缩是通过在相干纠缠门和选定的量子位子集之间交替的算法,这种方法与传统的量子算法框架截然不同,需要对量子算法和硬件设计进行根本性的重新思考。该项目将进行研究以建立一个全息模拟技术的基本理论和实验原理验证将开发先进的全息模拟技术来处理电子材料、2d 和 3d 模型,并计算与现实世界设备相关的非平衡电子和热传输以及光谱。量子态全息表示的基本能力和局限性将被严格表征,项目团队将制造一个电路量子电动力学(cQED)测试台,其中由两级超导量子位控制。多级超导腔模式提供了比传统两级量子位更大的量子存储器,并且混合量子位/腔系统提供了创建量子纠缠的强大方法。与传统的仅量子位系统相比,具有相同数量的量子设备的更复杂的材料状态将在该 cQED 测试平台上展示开发的全息算法,并根据商业量子计算平台上的补充模拟对其性能进行基准测试。这一探索阶段将用于设计可扩展的 cQED 设备,用于对超出当前经典超级计算机能力的大规模问题进行全息模拟。该 EAGER 奖项由材料研究部与化学部共同支持。该奖项反映了 NSF法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Holographic Simulation of Correlated Electrons on a Trapped-Ion Quantum Processor
  • DOI:
    10.1103/prxquantum.3.030317
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
    Daoheng Niu;R. Haghshenas;Yuxuan Zhang;M. Foss-Feig;Garnet Kin-Lic Chan;Andrew C. Potter
  • 通讯作者:
    Daoheng Niu;R. Haghshenas;Yuxuan Zhang;M. Foss-Feig;Garnet Kin-Lic Chan;Andrew C. Potter
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Potter其他文献

Interactive rhetoric for online learning environments
在线学习环境的互动修辞
  • DOI:
    10.1016/j.iheduc.2004.06.002
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andrew Potter
  • 通讯作者:
    Andrew Potter
A Discourse Approach to Explanation Aware Knowledge Representation
解释感知知识表示的话语方法
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andrew Potter
  • 通讯作者:
    Andrew Potter
Conformationally defined piperazine bis(N-oxides) bearing amino acid derived side chains
带有氨基酸衍生侧链的构象定义的哌嗪双(N-氧化物)
  • DOI:
  • 发表时间:
    1998
  • 期刊:
  • 影响因子:
    0
  • 作者:
    I. O’Neil;Andrew Potter;J. Southern;A. Steiner;J. Barkley
  • 通讯作者:
    J. Barkley
An Algorithm for Pythonizing Rhetorical Structures
一种Python化修辞结构的算法
Statewide implementation of automated writing evaluation: analyzing usage and associations with state test performance in grades 4-11
全州范围内实施自动写作评估:分析 4-11 年级的使用情况以及与州测试表现的关联

Andrew Potter的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew Potter', 18)}}的其他基金

NSF Convergence Accelerator Track C: A Toolkit for Solving Practical Materials Science Problems on Near-Term
NSF 融合加速器轨道 C:解决近期实际材料科学问题的工具包
  • 批准号:
    2040549
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Non-equilibrium quantum dynamics, topology, and criticality
职业:非平衡量子动力​​学、拓扑和临界性
  • 批准号:
    1653007
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于细菌接触损伤与应激诱导的QAC/PVDF膜抗生物污染机制与调控
  • 批准号:
    51808395
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

EAGER-QAC-QSA: Quantum Algorithms for Correlated Electron-Phonon System
EAGER-QAC-QSA:相关电子声子系统的量子算法
  • 批准号:
    2337930
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
RAISE-QAC-QSA: Open Quantum Systems on Noisy Intermediate-Scale Quantum Devices
RAISE-QAC-QSA:噪声中等规模量子设备上的开放量子系统
  • 批准号:
    2331441
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER-QAC-QSA: Quantum Algorithms for Correlated Electron-Phonon System
EAGER-QAC-QSA:相关电子声子系统的量子算法
  • 批准号:
    2038011
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER‐QAC‐QSA: Quantum Chemistry with Mean-field Cost from Semidefinite Programming on Quantum Computing Devices
EAGER – QAC – QSA:量子计算设备上半定编程的具有平均场成本的量子化学
  • 批准号:
    2035876
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
RAISE-QAC-QSA: Open Quantum Systems on Noisy Intermediate-Scale Quantum Devices
RAISE-QAC-QSA:噪声中等规模量子设备上的开放量子系统
  • 批准号:
    2037783
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了