RAPID: Optimal allocation of COVID-19 testing based on context-specific outbreak control objectives
RAPID:根据具体情况的疫情控制目标优化 COVID-19 检测分配
基本信息
- 批准号:2037885
- 负责人:
- 金额:$ 18.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The purpose of this project is to design a framework for objective-driven, context dependent disease surveillance strategies, designed to deal with sampling errors and biases. This framework will be applied to the allocation of COVID-19 testing based on multiple outbreak scenarios, employing the use of multiple models to improve decision-making for COVID-19 surveillance and control. This work will improve the response to the COVID-19 pandemic. Results will be presented to key federal agencies, so that they can be considered as part of the decision-making process for the COVID-19 outbreak. These methods will also be highly applicable to optimal vaccine allocation especially during the early stages of vaccine availability when supplies will be limited. In addition, it will provide a framework for future outbreak testing response. One postdoctoral researcher will be trained in the theory and methods of applied epidemiological research. With a growing, but still limited number of imperfect tests available, the way in which tests are allocated critically determines what we can learn and in turn, what inferences can be made with respect to managing the disease for individuals and populations. This poses an optimal allocation problem for limited resources. The context-dependent nature of allocating a limited number of tests introduces additional potential sources of error and bias, making the question of optimal testing allocation a unique challenge. Current modeling efforts focus necessarily on disease dynamics and the efficacy of intervention strategies, but few consider testing, contact tracing, and isolation strategies explicitly. Unlike shelter-in-place or social distancing mandates, the impact of test allocation on management strategy decision-making is density-dependent. While testing remains limited, it is critical to explicitly model test allocation and strategies that involve both monitoring and management. The key to successful surveillance is to actively design surveillance strategies for a specific objective. The project will use a principle of effective monitoring based on two steps. First, identify the objective of the monitoring? Second, tailor the sampling design to achieve that objective, in this case selecting groups of individuals in a nonrepresentative way and to separately estimate the probabilities that a randomly sampled individual would appear in these groups. Misclassification of disease state (e.g., false positives/negatives) due to the specificity and sensitivity of different tests, the performance of different test platforms and population-level incidence will also be addressed.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的目的是为目标驱动的,依赖背景的疾病监视策略设计一个框架,旨在处理抽样错误和偏见。该框架将根据多个爆发场景应用于Covid-19测试的分配,并采用多种模型来改善COVID-19-19的监视和控制。这项工作将改善对19009年大流行的反应。结果将介绍给主要的联邦机构,以便可以将其视为COVID-19疫情决策过程的一部分。这些方法也将非常适用于最佳疫苗分配,尤其是在疫苗可用性的早期阶段,当供应受到限制时。此外,它将为将来的爆发测试响应提供一个框架。一名博士后研究人员将接受应用流行病学研究的理论和方法的培训。随着可用的不完美测试的增长但仍有限制的测试方式,对测试的分配方式可以确定我们可以学到的东西,而对个人和人群管理疾病的管理可以做出什么推论。这为有限资源带来了最佳分配问题。分配有限数量测试的上下文依赖性性质引入了其他潜在的错误和偏见来源,这使得最佳测试分配的问题成为独特的挑战。当前的建模工作必须集中于疾病动态和干预策略的功效,但很少有人考虑测试,接触跟踪和隔离策略。与现场庇护所或社会距离任务不同,测试分配对管理策略决策的影响取决于密度。尽管测试仍然有限,但要明确模型测试分配以及涉及监视和管理的策略至关重要。成功监视的关键是为特定目标积极设计监视策略。该项目将根据两个步骤使用有效监控的原则。首先,确定监视的目标?其次,量身定制采样设计以实现这一目标,在这种情况下,以非代表性的方式选择了个体组,并分别估计这些组中随机抽样的个体会出现在这些组中的概率。由于不同测试的特异性和敏感性,疾病状态的错误分类(例如,误报/负面因素)也将被解决不同的测试平台和人口水平的发病率的性能。该奖项反映了NSF的法定任务,并被认为是通过基金会的智力优点和广泛的影响来审查CRETERIA的评估,并被认为是值得通过评估的支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Evaluation of the US COVID-19 Scenario Modeling Hub for informing pandemic response under uncertainty.
- DOI:10.1038/s41467-023-42680-x
- 发表时间:2023-11-20
- 期刊:
- 影响因子:16.6
- 作者:Howerton E;Contamin L;Mullany LC;Qin M;Reich NG;Bents S;Borchering RK;Jung SM;Loo SL;Smith CP;Levander J;Kerr J;Espino J;van Panhuis WG;Hochheiser H;Galanti M;Yamana T;Pei S;Shaman J;Rainwater-Lovett K;Kinsey M;Tallaksen K;Wilson S;Shin L;Lemaitre JC;Kaminsky J;Hulse JD;Lee EC;McKee CD;Hill A;Karlen D;Chinazzi M;Davis JT;Mu K;Xiong X;Pastore Y Piontti A;Vespignani A;Rosenstrom ET;Ivy JS;Mayorga ME;Swann JL;España G;Cavany S;Moore S;Perkins A;Hladish T;Pillai A;Ben Toh K;Longini I Jr;Chen S;Paul R;Janies D;Thill JC;Bouchnita A;Bi K;Lachmann M;Fox SJ;Meyers LA;Srivastava A;Porebski P;Venkatramanan S;Adiga A;Lewis B;Klahn B;Outten J;Hurt B;Chen J;Mortveit H;Wilson A;Marathe M;Hoops S;Bhattacharya P;Machi D;Cadwell BL;Healy JM;Slayton RB;Johansson MA;Biggerstaff M;Truelove S;Runge MC;Shea K;Viboud C;Lessler J
- 通讯作者:Lessler J
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Katriona Shea其他文献
The US COVID-19 and Influenza Scenario Modeling Hubs: Delivering long-term projections to guide policy.
美国 COVID-19 和流感情景建模中心:提供长期预测以指导政策。
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:3.8
- 作者:
Sara L Loo;E. Howerton;L. Contamin;Clair Smith;R. Borchering;Luke C Mullany;Samantha J Bents;Erica C Carcelén;Sung;Tiffany Bogich;Willem G van Panhuis;Jessica Kerr;J. Espino;Katie Yan;Harry Hochheiser;Michael C. Runge;Katriona Shea;Justin Lessler;Cécile Viboud;S. Truelove - 通讯作者:
S. Truelove
Management of populations in conservation, harvesting and control.
保护、收获和控制方面的种群管理。
- DOI:
10.1016/s0169-5347(98)01381-0 - 发表时间:
1998 - 期刊:
- 影响因子:16.8
- 作者:
Katriona Shea - 通讯作者:
Katriona Shea
Effect of patch size and plant density of Paterson"s curse (Echium plantagineum) on the oviposition of a specialist weevil, Mogulones larvatus
帕特森诅咒 (Echium plantagineum) 的斑块大小和植物密度对专业象鼻虫 Mogulones larvatus 产卵的影响
- DOI:
10.1007/s004420000425 - 发表时间:
2000 - 期刊:
- 影响因子:2.7
- 作者:
Katriona Shea;M. Smyth;A. Sheppard;R. Morton;J. Chalimbaud - 通讯作者:
J. Chalimbaud
Oviposition response of the biocontrol agent <em>Rhinocyllus conicus</em> to resource distribution in its invasive host, <em>Carduus nutans</em>
- DOI:
10.1016/j.biocontrol.2020.104369 - 发表时间:
2021-01-01 - 期刊:
- 影响因子:
- 作者:
Zeynep Sezen;Ottar N. Bjørnstad;Katriona Shea - 通讯作者:
Katriona Shea
Katriona Shea的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Katriona Shea', 18)}}的其他基金
RAPID: Variant Emergence and Scenario Design for the COVID-19 Scenario Modeling Hub
RAPID:COVID-19 场景建模中心的变体出现和场景设计
- 批准号:
2220903 - 财政年份:2022
- 资助金额:
$ 18.02万 - 项目类别:
Standard Grant
RAPID: COVID-19 Scenario Modeling Hub to harness multiple models for long-term projections and decision support
RAPID:COVID-19 场景建模中心,利用多个模型进行长期预测和决策支持
- 批准号:
2126278 - 财政年份:2021
- 资助金额:
$ 18.02万 - 项目类别:
Standard Grant
RAPID: Harnessing the power of multiple models for outbreak management
RAPID:利用多种模型的力量进行疫情管理
- 批准号:
2028301 - 财政年份:2020
- 资助金额:
$ 18.02万 - 项目类别:
Standard Grant
Workshop to Advance Theory in Ecology; October 21, 2019; State College, PA
推进生态学理论讲习班;
- 批准号:
1908538 - 财政年份:2019
- 资助金额:
$ 18.02万 - 项目类别:
Standard Grant
NSFDEB-NERC: Diversity, Disturbance and Invasion: Using experimental microcosms to illuminate ecological theory
NSFDEB-NERC:多样性、干扰和入侵:利用实验微观世界阐明生态理论
- 批准号:
1556444 - 财政年份:2016
- 资助金额:
$ 18.02万 - 项目类别:
Standard Grant
RAPID: Value of Information and Structured Decision-Making for Management of Ebola
RAPID:信息和结构化决策对于埃博拉管理的价值
- 批准号:
1514704 - 财政年份:2014
- 资助金额:
$ 18.02万 - 项目类别:
Standard Grant
MPS-BIO: Dynamics and stability of plant-pollinator mutualistic networks in response to ecological perturbations
MPS-BIO:植物-传粉媒介互惠网络响应生态扰动的动态和稳定性
- 批准号:
1313115 - 财政年份:2013
- 资助金额:
$ 18.02万 - 项目类别:
Standard Grant
Disturbance Theory: The effects of different types of environmental perturbation on species invasion and coexistence
扰动理论:不同类型的环境扰动对物种入侵和共存的影响
- 批准号:
0815373 - 财政年份:2008
- 资助金额:
$ 18.02万 - 项目类别:
Continuing Grant
QEIB: Importance of Individual Variation to the Demography, Dispersal, and Spread of Invasive and Endangered Species: An Integral Projection Model Approach
QEIB:个体变异对入侵和濒危物种的人口统计、扩散和传播的重要性:整体投影模型方法
- 批准号:
0614065 - 财政年份:2006
- 资助金额:
$ 18.02万 - 项目类别:
Continuing Grant
QEIB: Spatial Spread of Invasive Carduus Thistles: Linking Demography and Dispersal
QEIB:入侵性飞蓟属蓟的空间传播:将人口统计与传播联系起来
- 批准号:
0315860 - 财政年份:2003
- 资助金额:
$ 18.02万 - 项目类别:
Standard Grant
相似国自然基金
基于情境最佳化的模型预测控制方法研究
- 批准号:62303416
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于因果学习的脓毒症最佳治疗策略与效应估计关键技术研究
- 批准号:62371438
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
两类区域上再生核希尔伯特空间中的n-最佳核逼近问题
- 批准号:12301101
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Camassa-Holm方程和短脉冲型方程的最佳适定性与爆破现象研究
- 批准号:12301298
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于光域正交基分解的微波光子宽带矢量信号最佳接收方法研究
- 批准号:62305266
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
VIPCare: Virtual Predictive Care workflow with integrated surveillance for optimal care protocol selection and management in at-risk prostate cancer patients
VIPCare:虚拟预测护理工作流程,具有综合监测功能,可为高危前列腺癌患者提供最佳护理方案选择和管理
- 批准号:
10758350 - 财政年份:2023
- 资助金额:
$ 18.02万 - 项目类别:
Improving Outcomes in Depression in Primary Care in a Low Resource Setting
改善资源匮乏的初级保健中抑郁症的治疗效果
- 批准号:
10624403 - 财政年份:2022
- 资助金额:
$ 18.02万 - 项目类别:
Value evaluation method of energy storage resources based on optimal operation
基于优化运行的储能资源价值评估方法
- 批准号:
22K14638 - 财政年份:2022
- 资助金额:
$ 18.02万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
A Welfare Economics Approach to the Optimal Public Debt Level
最优公共债务水平的福利经济学方法
- 批准号:
22K01523 - 财政年份:2022
- 资助金额:
$ 18.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
RAPID: Identifying the Drivers of Optimal COVID-19 Allocation
RAPID:确定最佳 COVID-19 分配的驱动因素
- 批准号:
2138192 - 财政年份:2022
- 资助金额:
$ 18.02万 - 项目类别:
Standard Grant