EAGER: QIA: A quantum algorithm for detecting quantum information leakage in qubit systems
EAGER:QIA:一种用于检测量子位系统中量子信息泄漏的量子算法
基本信息
- 批准号:2037300
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In quantum computers, information is encoded in quantum bits, that is, qubits. Ideally a qubit is a two-level quantum system, representing the logical states "0" and "1". In the two leading quantum computing platforms, superconducting flux qubit and trapped ions, quantum information encoded in the qubit is prone to leakage. As a consequence, information leakage is one of the main sources of errors that affect our ability to perform successful computing on near-term quantum computing devices. This project develops and experimentally tests a novel quantum algorithm for detecting specific leakage errors in qubit systems by harnessing entanglement, which are the strong correlations in quantum systems. Thanks to these strong correlations, the algorithm allows an accurate detection of the leakage errors with substantially fewer experimental runs than required by state-of-the-art leakage detection protocols. Efficiently and precisely detecting specific information leakage errors is crucial for the current advancement of state-of-the-art quantum computing platforms, and in turn increases our ability to perform more precise quantum computing tasks with relevance throughout science and engineering. The scientific goals of this project is to develop quantum algorithm for detecting potential leakage channels by using strongly-correlated (entangled) bipartite quantum systems. The correlations between the systems are specifically designed to probe and detect particular leakage error channels. The algorithm is suitable and has the flexibility to detect any leakage channel of concern; it is deterministic and allows one to detect the specific leakage channels with probability one. The PIs and the student involved in this project are testing and benchmarking the algorithm on currently available quantum computing devices. The successful development and implementation of a leakage detection algorithm thus enhances our ability to suppress them, and in turn enhances the performance of currently available quantum computing platforms.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在量子计算机中,信息用量子位编码,即Qubits。理想情况下,量子是一个两级量子系统,代表逻辑状态“ 0”和“ 1”。在两个领先的量子计算平台,即超导量乘量子和捕获的离子,量子量的量子信息很容易泄漏。 结果,信息泄漏是影响我们在近期量子计算设备上执行成功计算的能力的主要误差来源之一。该项目通过利用纠缠是量子系统中的强相关性,开发并通过实验测试了一种新型量子算法来检测量子系统中的特定泄漏误差。由于这些较强的相关性,该算法允许准确检测泄漏误差,其实验运行范围比最新的泄漏检测方案所要求的要少得多。有效,精确地检测到特定信息泄漏错误对于当前最先进的量子计算平台的进步至关重要,进而提高了我们在整个科学和工程中使用相关性执行更精确的量子计算任务的能力。该项目的科学目标是开发量子算法,用于通过使用强相关(纠缠)两分量量子系统来检测潜在的泄漏通道。系统之间的相关性是专门设计用于探测和检测特定泄漏误差通道的。该算法是合适的,并且具有检测任何关注的泄漏通道的灵活性;它是确定性的,允许一个人以概率检测特定的泄漏通道。 PIS和参与该项目的学生正在测试和基准在当前可用的量子计算设备上测试算法。因此,成功开发和实施泄漏检测算法增强了我们抑制它们的能力,进而增强了当前可用的量子计算平台的性能。这项奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子优点和更广泛的影响审查标准来评估值得通过评估的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amir Kalev其他文献
Prospects for NMR Spectral Prediction on Fault-Tolerant Quantum Computers
容错量子计算机的核磁共振谱预测前景
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
J. Elenewski;Christina M. Camara;Amir Kalev - 通讯作者:
Amir Kalev
Amir Kalev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amir Kalev', 18)}}的其他基金
NSF-BSF: Fast Quantum Optimal Control on Exponentially Large Spaces
NSF-BSF:指数大空间的快速量子最优控制
- 批准号:
2210374 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
FET: Small: Collaborative Research: Efficient and Robust Characterization of Quantum Systems
FET:小型:协作研究:量子系统的高效且稳健的表征
- 批准号:
2100794 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: QSA: Solving Optimization Problems on NISQ Computers
EAGER:QSA:解决 NISQ 计算机上的优化问题
- 批准号:
2037301 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
FET: Small: Collaborative Research: Efficient and Robust Characterization of Quantum Systems
FET:小型:协作研究:量子系统的高效且稳健的表征
- 批准号:
1909141 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似海外基金
EAGER-QIA: Detecting Knottedness with Quantum Computers
EAGER-QIA:使用量子计算机检测打结情况
- 批准号:
2313766 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: QIA: Large Scale QAOA Quantum Simulator
合作研究:EAGER:QIA:大规模 QAOA 量子模拟器
- 批准号:
2035606 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: QIA: Large Scale QAOA Quantum Simulator
合作研究:EAGER:QIA:大规模 QAOA 量子模拟器
- 批准号:
2035577 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER-QIA: Detecting Knottedness with Quantum Computers
EAGER-QIA:使用量子计算机检测打结情况
- 批准号:
2038020 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: QIA: Large Scale QAOA Quantum Simulator
合作研究:EAGER:QIA:大规模 QAOA 量子模拟器
- 批准号:
2122793 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant