Collaborative Research: Decoding the Corrosion of Borate Glasses: From Fundamental Science to Quantitative Structure-Property Relationships

合作研究:解码硼酸盐玻璃的腐蚀:从基础科学到定量结构-性能关系

基本信息

项目摘要

NON-TECHNICAL DESCRIPTION: Chemical durability of glass is a topic of interest today; fundamental understanding is of paramount importance to the glass industry and to the pursuit of overcoming various challenges relevant to the well-being of humanity and the environment, including nuclear waste management and development of novel biomaterials. This project aims at understanding the fundamental science governing corrosion of multicomponent borate glasses, achieved through the unification of experimental studies and artificial intelligence. Successful completion of this project is expected to lay the foundation of new fundamental knowledge to understand and describe composition-structure-property relationships in glass corrosion, and advance new machine learning-based models to promptly and reliably predict the corrosion behavior of borate glasses. The U.S. glass/materials industry is facing a severe shortage of experienced glass engineers/scientists. The project reduces this shortage by training undergraduate and graduate students in glass science and engineering, thus providing a talent pool for the U.S. glass/materials industry, academia, and national laboratories. The education and outreach activities are designed to invoke interest in students and teachers at the middle and high school levels, in addition to the training of undergraduate and graduate science and engineering students. TECHNICAL DETAILS: Our current understanding of glass corrosion is based primarily on empirical data, as there is still no complete consensus on the primary mechanism of glass dissolution that applies across a wide composition space. Therefore, there is an exigent need to develop robust, fundamental understanding of the linkage(s) between chemical composition, atomic/molecular structure, and chemical durability of glasses in order to address crucial and scientifically challenging problems (e.g., designing glasses with desired chemical durability). Accordingly, the project aims at combining the strengths of experimental studies and artificial intelligence to reveal the underlying mechanisms that dictate the dissolution behavior of borate glasses in aqueous environments; and developing a cloud-based quantitative structure-property relationship (QSPR) model – powered by theory-guided machine learning engine – to predict the time-dependent corrosion behavior of oxide glasses. Enabling the materials-by-design approach – which is in alignment with the U.S. Materials Genome Initiative – this project is a pioneering effort, representing a leap forward in designing oxide glasses with controlled chemical durability. Apart from revealing fundamental drivers of glass corrosion and advancing a QSPR model to reliably predict glass corrosion, a significant outcome of the project is the development of a talent pipeline of undergraduate and graduate students well-trained in glass/materials science and machine learning. Further, the project's education plan incorporates a foundational, spiral approach that builds interest at the elementary, middle, and high school level students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:玻璃的化学耐用性是当今感兴趣的话题;基本的理解对玻璃工业和克服与人类和环境的福祉相关的各种挑战至关重要,包括核废料管理和新型生物材料的发展。该项目旨在理解通过实验研究和人工智能统一实现多组分玻璃杯的基础科学。预计该项目的成功完成将奠定新的基本知识的基础,以理解和描述玻璃腐蚀中的构图结构 - 特性关系,并推动基于机器学习的新模型,以迅速而可靠地预测硼砂眼镜的腐蚀行为。美国玻璃/材料行业正面临经验丰富的玻璃工程师/科学家的严重短缺。该项目通过培训玻璃科学和工程学的本科生和研究生来减少这种短缺,从而为美国玻璃/材料行业,学术界和国家实验室提供了人才库。教育和宣传活动旨在引起对中学和高中级别的学生和教师的兴趣,除了对本科和研究生科学和工程专业的学生培训。技术详细信息:我们目前对玻璃腐蚀的理解主要基于经验数据,因为在跨广泛组成空间的玻璃溶解的主要机制仍然没有完全共识。因此,有必要对化学成分,原子/分子结构和玻璃杯化学耐用性之间的联系有强大的基本了解,以解决至关重要的科学挑战问题(例如,设计具有所需化学耐用性的玻璃)。根据该项目的旨在结合实验研究和人工智能的优势,以揭示决定在水性环境中硼酸盐玻璃的溶解行为的潜在机制;并开发基于云的定量结构 - 特性关系(QSPR)模型(由理论指导的机器学习引擎提供支持),以预测氧化物玻璃的时间依赖性腐蚀行为。启用材料逐个设计的方法 - 与美国材料基因组计划保持一致 - 该项目是一项开创性的努力,代表了设计具有控制化学耐久性的氧化物玻璃的飞跃。除了揭示玻璃腐蚀的基本驱动因素并推进QSPR模型以可靠地预测玻璃腐蚀外,该项目的重大结果是开发了在玻璃/材料科学和机器学习方面训练有素的本科生和研究生的人才渠道。此外,该项目的教育计划纳入了一种基本的螺旋方法,该方法在小学,中学和高中级的学生中引起了兴趣。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响评估标准,认为通过评估被认为是宝贵的支持。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Predicting Dissolution Kinetics of Tricalcium Silicate Using Deep Learning and Analytical Models
  • DOI:
    10.3390/a16010007
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Taihao Han;Sai Akshay Ponduru;Arianit A. Reka;Jie Huang;G. Sant;Aditya Kumar
  • 通讯作者:
    Taihao Han;Sai Akshay Ponduru;Arianit A. Reka;Jie Huang;G. Sant;Aditya Kumar
A Deep Learning Approach to Design and Discover Sustainable Cementitious Binders: Strategies to Learn From Small Databases and Develop Closed-form Analytical Models
  • DOI:
    10.3389/fmats.2021.796476
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Taihao Han;Sai Akshay Ponduru;R. Cook;Jie Huang;G. Sant;Aditya Kumar
  • 通讯作者:
    Taihao Han;Sai Akshay Ponduru;R. Cook;Jie Huang;G. Sant;Aditya Kumar
Deep learning to predict the hydration and performance of fly ash-containing cementitious binders
  • DOI:
    10.1016/j.cemconres.2023.107093
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    11.4
  • 作者:
    Taihao Han;Rohan Bhat;Sai Akshay Ponduru;A. Sarkar;Jie Huang;G. Sant;Hongyan Ma;N. Neithalath;Aditya Kumar
  • 通讯作者:
    Taihao Han;Rohan Bhat;Sai Akshay Ponduru;A. Sarkar;Jie Huang;G. Sant;Hongyan Ma;N. Neithalath;Aditya Kumar
Machine Learning Enabled Models to Predict Sulfur Solubility in Nuclear Waste Glasses
机器学习模型可预测核废料玻璃中的硫溶解度
  • DOI:
    10.1021/acsami.1c10359
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Xu, Xinyi;Han, Taihao;Huang, Jie;Kruger, Albert A.;Kumar, Aditya;Goel, Ashutosh
  • 通讯作者:
    Goel, Ashutosh
Machine learning enabled closed‐form models to predict strength of alkali‐activated systems
机器学习使封闭式模型能够预测碱激活系统的强度
  • DOI:
    10.1111/jace.18399
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Han, Taihao;Gomaa, Eslam;Gheni, Ahmed;Huang, Jie;ElGawady, Mohamed;Kumar, Aditya
  • 通讯作者:
    Kumar, Aditya
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aditya Kumar其他文献

Dynamics and control of integrated networks with purge streams
具有吹扫流的集成网络的动态和控制
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Baldea;P. Daoutidis;Aditya Kumar
  • 通讯作者:
    Aditya Kumar
Rheological modeling of frontal-polymerization-based direct ink writing of thermoset polymers
基于正面聚合的热固性聚合物直接墨水书写的流变建模
  • DOI:
    10.1016/j.cma.2023.116565
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    7.2
  • 作者:
    Michael Zakoworotny;Francisco Javier Balta Bonner;Aditya Kumar;J. E. Aw;S. Tawfick;R. Ewoldt;N. Sottos;P. Geubelle
  • 通讯作者:
    P. Geubelle
Effect of integrated use of NPKZn, FYM and bio-fertilizers on soil properties and performance of rice crop (Oryza sativa L.)
NPKZn、FYM 和生物肥料综合使用对土壤性质和水稻生长性能的影响 (Oryza sativa L.)
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aditya Kumar;S. Shahi;A. Singh;Chandrashekhar
  • 通讯作者:
    Chandrashekhar
Financial Prudence of Healthcare Screening Program in Urban Set-up
城市医疗筛查项目的财务审慎
  • DOI:
    10.5005/jp-journals-10035-1091
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aditya Kumar;S. Patnaik;M. Singh;Nishu Singh;Ashuthosh Sharma;T. Paul
  • 通讯作者:
    T. Paul
A novel method to predict die shift during compression molding in embedded wafer level package
一种预测嵌入式晶圆级封装压缩成型过程中芯片移位的新方法

Aditya Kumar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Aditya Kumar', 18)}}的其他基金

A Thermo-Kinetic Approach to Enhance the Use of Clays in Concrete
提高粘土在混凝土中使用的热动力学方法
  • 批准号:
    1661609
  • 财政年份:
    2017
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant

相似国自然基金

基于中国手语的肢体运动想象脑机接口解码研究
  • 批准号:
    62306139
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
人体运动神经生理机制建模及基于肌电信号的运动意图鲁棒解码研究
  • 批准号:
    62306083
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
跨被试细粒度情绪脑电解码方法研究
  • 批准号:
    62376203
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
Cas14精准解码规律研究及其在转录因子高灵敏生物传感中的应用
  • 批准号:
    22304083
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高码率局部修复码的编解码关键技术研究
  • 批准号:
    62301189
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Decoding thermal and magmatic history of mafic and ultramafic rocks through systematic studies of cation diffusion in pyroxene
合作研究:通过系统研究辉石中的阳离子扩散来解码镁铁质和超镁铁质岩石的热和岩浆历史
  • 批准号:
    2147598
  • 财政年份:
    2022
  • 资助金额:
    $ 26万
  • 项目类别:
    Continuing Grant
Collaborative Research: Decoding thermal and magmatic history of mafic and ultramafic rocks through systematic studies of cation diffusion in pyroxene
合作研究:通过系统研究辉石中的阳离子扩散来解码镁铁质和超镁铁质岩石的热和岩浆历史
  • 批准号:
    2147603
  • 财政年份:
    2022
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: QODED: Quantum codes Optimized for the Dynamics between Encoded Computation and Decoding using Classical Coding Techniques
协作研究:CIF:中:QODED:针对使用经典编码技术的编码计算和解码之间的动态进行优化的量子代码
  • 批准号:
    2106213
  • 财政年份:
    2021
  • 资助金额:
    $ 26万
  • 项目类别:
    Continuing Grant
Collaborative Research:SLINGSHOT:Decoding Dark Matter through Gravitational Lensing
合作研究:弹弓:通过引力透镜解码暗物质
  • 批准号:
    2108866
  • 财政年份:
    2021
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Collaborative Research: Decoding the Corrosion of Borate Glasses: From Fundamental Science to Quantitative Structure-Property Relationships
合作研究:解码硼酸盐玻璃的腐蚀:从基础科学到定量结构-性能关系
  • 批准号:
    2034871
  • 财政年份:
    2021
  • 资助金额:
    $ 26万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了