Collaborative Research: Crossing the percolation threshold for selective gas transport using interconnected crystals of metal–organic frameworks in polymer-based hybrid membranes
合作研究:利用聚合物杂化膜中金属有机框架的互连晶体跨越选择性气体传输的渗滤阈值
基本信息
- 批准号:2034742
- 负责人:
- 金额:$ 26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-15 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Light gases such as methane, ethane, and ethylene play an important role in industrial applications, including their use as gas and liquid fuels and as precursors in polymer manufacturing. Access to high purity gases is typically required for these applications necessitating an industrial gas separation process. Gas separation technology is also required to reduce the concentration of carbon dioxide and other greenhouse gases in the atmosphere. Accordingly, the development of low-energy and low-cost separations of gas mixtures is critically important to meet industrial demand, address environmental concerns, and improve standards of living. Separating gas molecules from a mixture requires materials (molecular sieves) containing holes with uniform dimensions that are comparable with the sizes of the small gas molecules to be separated. However, suitable molecular sieve particles are usually difficult to form into the geometries necessary for scales relevant to industrial applications or environmental remediation. This project will advance the fundamental science of forming molecular sieve particles into well-connected networks, which will enable the development of large-scale separation technologies. In the networks, the particles will be held together by polymer interfaces designed to minimize any adverse effects on the particle sieving function and, at the same time, preserve the structural integrity of the material. The separation performance, gas transport properties, and structural properties of such networks will be quantified on all relevant length scales. The outcomes of this project will lay the foundation for rationally designed molecular sieve morphologies that can be optimized for the desired gas separation. The investigators will also initiate a new research mentoring program with the objective of teaching and training students from underrepresented groups in STEM. Existing institutional programs will be leveraged, and the use of online tools will be emphasized to enhance the program's effectiveness.Metal-organic frameworks (MOFs) are high porosity molecular sieves exhibiting extraordinary property sets when applied in membrane-based gas separations. However, these materials cannot be easily formed into defect-free membrane geometries. Hence, it is challenging to leverage the intrinsic transport benefits of MOFs for membrane separations. Mixing MOF crystals with polymers to make mixed-matrix membranes (MMMs) is a well-known strategy to form MOF-based membranes. However, the typical separation performance of MMMs is usually lower than that of the corresponding MOFs because MMM transport properties are unfavorably affected by the polymer phase and, in some cases, by interfacial MOF–polymer defects. A clear route to improve MMM performance is to increase MOF concentrations and even reach a percolation threshold to enable diffusion predominantly through the MOF phase, i.e., a situation when gas diffusion in MMMs can proceed mostly over interconnected MOF crystals. The investigators will develop the fundamental science of crossing the percolation threshold for gas transport in the MOF phase of MOF–polymer MMMs to enable separation performance comparable with that of pure MOF membranes. Membrane fabrication strategies will be developed based on a novel functionalization of the external surface of MOF crystals in combination with the development of fundamental understanding of intramembrane gas transport. Advanced nuclear magnetic resonance will be used to investigate changes of all relevant types of microscopic gas transport in MMMs as a function of increasing MOF loading and the diffusion length scale. MOF surface functionalization will also be optimized with respect to enhancing the mechanical properties of the membranes. This project will lead to the development of fundamental chemical separations knowledge related to percolation theory in composites. If successful, this concept will enable pure MOF-like transport properties to be accessed in membranes without the requirement of forming pure MOF films. In this way, new performance limits may be achieved for MMMs, including percolated transport for MOFs that are not easily formed into crystalline films. As a design platform, this approach could be used to improve the productivity and efficiency of chemical separations for membranes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
甲烷、乙烷和乙烯等轻质气体在工业应用中发挥着重要作用,包括将它们用作气体和液体燃料以及作为聚合物制造中的前体,这些应用通常需要获得高纯度气体,从而需要工业气体分离过程。还需要气体分离技术来降低大气中二氧化碳和其他温室气体的浓度,因此,开发低能耗和低成本的气体混合物分离对于满足工业需求、解决环境问题和解决问题至关重要。从混合物中分离气体分子需要含有与待分离的小气体分子尺寸相当的均匀孔的材料(分子筛),但是,合适的分子筛颗粒通常难以形成。该项目将推进将分子筛颗粒形成连接良好的网络的基础科学,这将促进大规模分离技术的发展。握住通过聚合物界面结合在一起,旨在最大限度地减少对颗粒筛分功能的任何不利影响,同时保持材料的结构完整性,此类网络的分离性能、气体传输性能和结构性能将在所有相关方面进行量化。该项目的成果将为合理设计分子筛形态奠定基础,从而优化所需的气体分离。研究人员还将启动一项新的研究指导计划,目的是对来自代表性不足群体的学生进行教学和培训。干。将利用现有的机构计划,并强调使用在线工具来提高计划的有效性。金属有机框架(MOF)是高孔隙率分子筛,在应用于基于膜的气体分离时表现出非凡的性能。因此,利用 MOF 的固有传输优势进行膜分离很难形成无缺陷的膜结构。 (MMM)是形成 MOF 基膜的众所周知的策略,但是,MMM 的典型分离性能通常低于相应的 MOF,因为 MMM 传输性能受到聚合物相的不利影响,并且在某些情况下,提高 MMM 性能的一个明确途径是增加 MOF 浓度,甚至达到渗透阈值,以实现主要通过 MOF 相扩散,即气体扩散的情况。 MMM 可以主要在互连的 MOF 晶体上进行,研究人员将开发跨越 MOF 聚合物 MMM 相中气体传输渗透阈值的基础科学,以使分离性能与纯 MOF 膜的制造策略相当。该技术基于 MOF 晶体外表面的新颖功能化,并结合对膜内气体传输的基本理解的发展而开发,将用于研究所有相关类型的微观气体的变化。 MMM 中的传输作为增加 MOF 负载的函数,并且 MOF 表面功能化也将在增强膜的机械性能方面得到优化。该项目将促进与渗滤理论相关的基础化学分离知识的发展。如果成功,这一概念将能够在膜中获得类似 MOF 的传输特性,而无需形成纯 MOF 薄膜,从而可以实现 MMM 的新性能极限,包括 MOF 的渗透传输。作为一种设计平台,这种方法可用于提高膜化学分离的生产率和效率。该奖项是 NSF 的法定使命,并通过使用基金会的智力价值进行评估,被认为值得支持。以及更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zachary Smith其他文献
Reaction coordinates and rate constants for liquid droplet nucleation: Quantifying the interplay between driving force and memory.
液滴成核的反应坐标和速率常数:量化驱动力和记忆之间的相互作用。
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:4.4
- 作者:
Sun;Zachary Smith;P. Tiwary - 通讯作者:
P. Tiwary
Assessing the Scope and Predictors of Intentional Dose Non-adherence in Clinical Trials
评估临床试验中有意剂量不依从的范围和预测因素
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
K. Getz;Zachary Smith;L. Shafner;A. Hanina - 通讯作者:
A. Hanina
New Benchmarks on Demographic Disparities in Pivotal Trials Supporting FDA-Approved Drugs and Biologics
支持 FDA 批准的药物和生物制剂的关键试验中人口统计差异的新基准
- DOI:
10.1007/s43441-023-00579-1 - 发表时间:
2023 - 期刊:
- 影响因子:1.5
- 作者:
Zachary Smith;E. Botto;Otis Johnson;Todd Rudo;K. Getz - 通讯作者:
K. Getz
Characterization of a 200-nF unipolar, high current, low inductance capacitor switch assembly.
200nF 单极、高电流、低电感电容器开关组件的表征。
- DOI:
10.1063/5.0047261 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
N. Zameroski;Charlie Anderson;H. Kirbie;M. Wisher;Nicholas Gibbs;Jeff Koeppel;J. Parson;Nico Rotunda;Michael Spencer;Zachary Smith - 通讯作者:
Zachary Smith
Can one trust kinetic and thermodynamic observables from biased metadynamics simulations: detailed quantitative benchmarks on millimolar drug fragment dissociation
人们可以相信有偏差的元动力学模拟中的动力学和热力学观察结果吗:毫摩尔药物片段解离的详细定量基准
- DOI:
10.1101/558601 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Debabrata Pramanik;Zachary Smith;A. Kells;P. Tiwary - 通讯作者:
P. Tiwary
Zachary Smith的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zachary Smith', 18)}}的其他基金
CAREER: Systematic Design of Polymers to Reveal the Anomalous Role of Fluorine on Membrane-based Separations
职业:聚合物的系统设计揭示氟在膜分离中的异常作用
- 批准号:
2146422 - 财政年份:2022
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
I-Corps: Portable Light Scattering Device for Field Diagnosis of Microcytic Anemia
I-Corps:用于小细胞性贫血现场诊断的便携式光散射装置
- 批准号:
1522627 - 财政年份:2015
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
相似国自然基金
自组装多肽用于血脑屏障穿越以及脑部药物递送的研究
- 批准号:52373291
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
极弱电网下多尺度耦合的混合同步构网型双馈风电机组故障穿越研究
- 批准号:52377177
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
构网型分散式风-氢一体化主动支撑与故障穿越研究
- 批准号:52367022
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
基于胆汁酸/CCL2/CCR2+TAMs代谢免疫穿越调控探讨乳腺癌“肝——乳”轴科学内涵与干预研究
- 批准号:82374446
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于热电力协同调控的食管穿越式适形热物理治疗理论与方法研究
- 批准号:52306105
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: NSF-BSF: WoU-MMA: RUI: Crossing the Chasm: From Compact Object Mergers to Cosmic Fireworks
合作研究:NSF-BSF:WoU-MMA:RUI:跨越鸿沟:从紧凑物体合并到宇宙烟花
- 批准号:
2107932 - 财政年份:2021
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Collaborative Research: NSF-BSF: WoU-MMA: Crossing the Chasm: From Compact Object Mergers to Cosmic Fireworks
合作研究:NSF-BSF:WoU-MMA:跨越鸿沟:从紧凑物体合并到宇宙烟花
- 批准号:
2107802 - 财政年份:2021
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Collaborative Research: NSF-BSF: WoU-MMA: Crossing the Chasm: From Compact Object Mergers to Cosmic Fireworks
合作研究:NSF-BSF:WoU-MMA:跨越鸿沟:从紧凑物体合并到宇宙烟花
- 批准号:
2107839 - 财政年份:2021
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Collaborative Research: Crossing the percolation threshold for selective gas transport using interconnected crystals of metal–organic frameworks in polymer-based hybrid membranes
合作研究:利用聚合物杂化膜中金属有机框架的互连晶体跨越选择性气体传输的渗滤阈值
- 批准号:
2034734 - 财政年份:2021
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Crossing the Walls in Enumerative Geometry
FRG:协作研究:跨越枚举几何的墙壁
- 批准号:
1564497 - 财政年份:2016
- 资助金额:
$ 26万 - 项目类别:
Standard Grant