CCSS: Collaborative Research: Intelligent Full-Duplex Cognitive Radio Networks for Pervasive Heterogeneous Wireless Networking

CCSS:协作研究:用于普遍异构无线网络的智能全双工认知无线电网络

基本信息

  • 批准号:
    2034530
  • 负责人:
  • 金额:
    $ 24.06万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Wireless devices and services are becoming increasingly pervasive in modern society. Meanwhile, the wireless spectrum is being shared by diverse wireless technologies with higher demands and is becoming more and more crowded. To meet the exponentially growing spectrum demands, there is a critical need for new wireless technologies that enable dynamic and efficient sharing of the spectrum and coexistence with other networks. This project addresses the issue of spectrum scarcity by developing a framework for achieving full-duplex transmission capability, accurate and efficient detection of available spectrum, and efficient spectrum sharing among diverse wireless devices and networks. With full-duplex transmission, a wireless device can transmit and receive information simultaneously, theoretically doubling the capacity achievable by conventional half-duplex devices. However, full-duplex transmission incurs both strong self-interference and additional interference to other devices, which limits its potential benefits. The project aims to overcome these challenges by applying machine learning and intelligent use of computational resources in the network. The project will advance the field of wireless networking by fully realizing the potential of full-duplex transmission and dynamic spectrum sharing. The project is expected to have a significant societal impact through enhanced wireless services.This project will holistically develop enabling technologies, through a synergistic framework of intelligent full-duplex CR networks (IFD-CRNs) with distributed software defined network (SDN) infrastructure at the edge, for pervasive heterogeneous wireless networking incorporating mobile edge computing. Coupled with an intelligence-enhanced network function virtualization (NFV) architecture, an IFD-CRN will employ advanced machine learning algorithms to substantially improve spectrum efficiency, data rates, and energy efficiency, and achieve efficient resource utilization with infrastructural flexibility, evolvability, and scalability. An IFD-CRN performs NFV in the proximity of wireless end users and is inclusive of the physical layer, making it suitable for hyper-dense, small cell heterogeneous wireless networks with tight latency requirements. IFD-CRN employs cyclic feature detection with online spectrum prediction to perform fast spectrum detection in the presence of strong self-interference caused by full-duplex transmission. A learning-based mechanism will enable IFD-CRNs to estimate the network state information and user characteristics to mitigate the unique inter-user interference caused by full-duplex in a dense network.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在现代社会中,无线设备和服务越来越普遍。同时,无线频谱通过需求更高的各种无线技术共享,并且变得越来越拥挤。为了满足指数增长的频谱需求,对新的无线技术有一个迫切的需求,这些技术可以使频谱和与其他网络共享动态和有效共享。该项目通过开发一个框架来解决频谱稀缺性问题,以实现全双工传输能力,对可用频谱的准确检测以及在各种无线设备和网络之间的有效频谱共享。通过全双工传输,无线设备可以同时传输和接收信息,从理论上讲,通过传统的半双链设备可以实现的容量增加一倍。但是,全双工传播会引起强大的自我干扰和对其他设备的额外干扰,这限制了其潜在的好处。该项目旨在通过在网络中应用机器学习和智能使用计算资源来克服这些挑战。该项目将通过充分意识到全面传输和动态频谱共享的潜力来推动无线网络领域。预计该项目将通过增强的无线服务产生重大的社会影响。该项目将通过具有分布式软件定义的网络(SDN)基础设施的智能全双制CR网络(IFD-CRN)的协同框架来整体开发能够开发能够的技术,以实现优势的无线网络网络,以实现Edge的边缘。再加上智能增强网络功能虚拟化(NFV)体系结构,IFD-CRN将采用先进的机器学习算法来实质上提高频谱效率,数据速率和能源效率,并实现有效的资源利用,并通过基础结构灵活性,可再生能力和可伸缩性和可伸缩性。 IFD-CRN在无线最终用户的接近性方面执行NFV,并且包括物理层,使其适合于超密集的小细胞异质无线网络,具有紧密的延迟要求。 IFD-CRN采用在线频谱预测中采用环状特征检测,在存在由全双工传输引起的强大自我干扰的情况下执行快速频谱检测。基于学习的机制将使IFD-CRN能够估算网络状态信息和用户特征,以减轻密集网络中全双工引起的独特的用户干扰。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的影响审查审查的评估来通过评估来获得支持的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

Chunxiao Chigan其他文献

Graph Convolutional Network Based Multi-Objective Meta-Deep Q-Learning for Eco-Routing
基于图卷积网络的多目标元深度 Q 学习的生态路由
On game theoretic DSA-driven MAC for cognitive radio networks
  • DOI:
    10.1016/j.comcom.2009.07.007
    10.1016/j.comcom.2009.07.007
  • 发表时间:
    2009-12-15
    2009-12-15
  • 期刊:
  • 影响因子:
  • 作者:
    Chao Zou;Chunxiao Chigan
    Chao Zou;Chunxiao Chigan
  • 通讯作者:
    Chunxiao Chigan
    Chunxiao Chigan
Security-oriented DSA for Network Access Control in Cognitive Radio Networks
认知无线电网络中面向安​​全的 DSA 网络访问控制
Resource-aware self-adaptive security provisioning in mobile ad hoc networks
移动自组织网络中资源感知的自适应安全配置
AWF-NA: A Complete Solution for Tampered Packet Detection in VANETs
AWF-NA:VANET 中篡改数据包检测的完整解决方案
共 7 条
  • 1
  • 2
前往

Chunxiao Chigan的其他基金

CAREER: Research on Real-time Robust and Secure Communications for Vehicular Ad Hoc Networks
职业:车载自组织网络实时鲁棒和安全通信的研究
  • 批准号:
    1252638
    1252638
  • 财政年份:
    2012
  • 资助金额:
    $ 24.06万
    $ 24.06万
  • 项目类别:
    Standard Grant
    Standard Grant
TC: Small: Security Provisioning for Cognitive Radio Networks
TC:小型:认知无线电网络的安全配置
  • 批准号:
    1252643
    1252643
  • 财政年份:
    2012
  • 资助金额:
    $ 24.06万
    $ 24.06万
  • 项目类别:
    Standard Grant
    Standard Grant
TC: Small: Security Provisioning for Cognitive Radio Networks
TC:小型:认知无线电网络的安全配置
  • 批准号:
    1017887
    1017887
  • 财政年份:
    2010
  • 资助金额:
    $ 24.06万
    $ 24.06万
  • 项目类别:
    Standard Grant
    Standard Grant
CAREER: Research on Real-time Robust and Secure Communications for Vehicular Ad Hoc Networks
职业:车载自组织网络实时鲁棒和安全通信的研究
  • 批准号:
    0644056
    0644056
  • 财政年份:
    2007
  • 资助金额:
    $ 24.06万
    $ 24.06万
  • 项目类别:
    Standard Grant
    Standard Grant

相似国自然基金

数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
  • 批准号:
    72372084
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
在线医疗团队协作模式与绩效提升策略研究
  • 批准号:
    72371111
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
面向人机接触式协同作业的协作机器人交互控制方法研究
  • 批准号:
    62373044
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于数字孪生的颅颌面人机协作智能手术机器人关键技术研究
  • 批准号:
    82372548
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
A-型结晶抗性淀粉调控肠道细菌协作产丁酸机制研究
  • 批准号:
    32302064
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: ECCS-CCSS Core: Resonant-Beam based Optical-Wireless Communication
合作研究:ECCS-CCSS核心:基于谐振光束的光无线通信
  • 批准号:
    2332172
    2332172
  • 财政年份:
    2024
  • 资助金额:
    $ 24.06万
    $ 24.06万
  • 项目类别:
    Standard Grant
    Standard Grant
Collaborative Research: ECCS-CCSS Core: Resonant-Beam based Optical-Wireless Communication
合作研究:ECCS-CCSS核心:基于谐振光束的光无线通信
  • 批准号:
    2332173
    2332173
  • 财政年份:
    2024
  • 资助金额:
    $ 24.06万
    $ 24.06万
  • 项目类别:
    Standard Grant
    Standard Grant
Collaborative Research: CCSS: Continuous Facial Sensing and 3D Reconstruction via Single-ear Wearable Biosensors
合作研究:CCSS:通过单耳可穿戴生物传感器进行连续面部传感和 3D 重建
  • 批准号:
    2401415
    2401415
  • 财政年份:
    2023
  • 资助金额:
    $ 24.06万
    $ 24.06万
  • 项目类别:
    Standard Grant
    Standard Grant
Collaborative Research: CCSS: When RFID Meets AI for Occluded Body Skeletal Posture Capture in Smart Healthcare
合作研究:CCSS:当 RFID 与人工智能相遇,用于智能医疗保健中闭塞的身体骨骼姿势捕获
  • 批准号:
    2245607
    2245607
  • 财政年份:
    2023
  • 资助金额:
    $ 24.06万
    $ 24.06万
  • 项目类别:
    Standard Grant
    Standard Grant
Collaborative Research: CCSS: Hierarchical Federated Learning over Highly-Dense and Overlapping NextG Wireless Deployments: Orchestrating Resources for Performance
协作研究:CCSS:高密度和重叠的 NextG 无线部署的分层联合学习:编排资源以提高性能
  • 批准号:
    2319780
    2319780
  • 财政年份:
    2023
  • 资助金额:
    $ 24.06万
    $ 24.06万
  • 项目类别:
    Standard Grant
    Standard Grant