Collaborative Research: EAGER: Foundations of Secure Multi-Robot Computation

协作研究:EAGER:安全多机器人计算的基础

基本信息

  • 批准号:
    2034123
  • 负责人:
  • 金额:
    $ 9.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-01 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

As people are starting to face the prospect of robots becoming part of our everyday lives, it has become increasingly clear that the information robots could gather can be both sensitive and valuable. But the robots may need to gather this information in order to function properly: as elsewhere in our lives, we need to understand how to best reconcile the tension between utility and privacy. The scientific progress made to date on algorithms for planning, control, and coordination of multi-robot systems has been enormous, but it also has paid too little attention to "who knows what." This research effort sets out to understand how the essential computational operations underlying many common robotic tasks can be safely accomplished in circumstances where there is some doubt about the integrity of other elements in the system, including whether they can be trusted to never expose information. This is crucial for autonomous robots operating within socially sensitive settings, as well as contested or adversarial scenarios. Beyond the anticipated impact on robotics research, the project will benefit society by addressing questions of strategic national interest and help facilitate privacy protections. It includes education and outreach activities that serve underrepresented groups, firstly via direct engagement with undergraduate and graduate students at Florida International University and Texas A&M, and secondly, in working with and mentoring high school teachers. The project will conduct both theoretical and empirical research, through a multi-part research agenda that will enable privacy-preserving filtering and planning in multi-robot scenarios via secure multi-party computation methods. This research endeavor represents a radical departure from present computational assumptions for robots: it aims to introduce abstractions, algorithms, and systems to solve robot tasks in scenarios characterized by collaboration between mutually distrusting robots, this is the first systematic effort to do so. The research will allow multiple robots to coordinate their use of shared resources, without divulging sensitive information that each robot possesses, despite their effective cooperation actually depending on that sensitive information. The research program will produce: (1) a new set of geometric primitives that allow the solution of motion planning (and related) problems in a privacy-preserving fashion; (2) novel filters, constructed to preserve privacy; and (3) constructions for calculating and querying computational topology properties, subject to limits on information shared. Together, these pieces lay groundwork, establishing the research area of secure multi-robot computation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着人们开始面对机器人成为我们日常生活的一部分的前景,越来越清楚的是,信息机器人可以收集的既敏感又有价值。 但是机器人可能需要收集此信息以正常运行:与我们生活中的其他地方一样,我们需要了解如何最好地调和效用与隐私之间的紧张局势。迄今为止,在计划,控制和协调多机器人系统的算法上取得的科学进步非常巨大,但它也很少关注“谁知道什么”。这项研究工作旨在了解如何在系统中其他元素的完整性(包括是否可以信任地可以永远不会暴露信息)的情况下安全地完成许多常见的机器人任务的基本计算操作。这对于在社会敏感的环境以及有争议或对抗性场景中运行的自动机器人至关重要。除了对机器人研究的预期影响之外,该项目还将通过解决战略国家利益问题并帮助促进隐私保护来使社会受益。它包括为代表性不足的团体提供服务的教育和外展活动,首先是与佛罗里达国际大学和德克萨斯A&M的本科生和研究生直接互动,其次是与高中老师合作和指导。该项目将通过多部分研究议程进行理论和实证研究,该议程将通过安全的多方计算方法在多机器人方案中实现隐私性过滤和计划。这项研究的努力代表了机器人目前的计算假设的根本性:它旨在引入抽象,算法和系统,以在相互不信任机器人之间协作的情况下解决机器人任务,这是第一个系统的努力。这项研究将允许多个机器人协调他们对共享资源的使用,而无需泄露每个机器人所拥有的敏感信息,尽管实际上它们取决于该敏感信息。该研究计划将产生:(1)一组新的几何原始素,以保护隐私的方式解决运动计划(及相关)问题的解决方案; (2)旨在保护隐私的新颖过滤器; (3)用于计算和查询计算拓扑属性的构造,但要受共享信息的限制。这些作品共同建立了基础,建立了安全多机器人计算的研究领域。该奖项反映了NSF的法定任务,并且使用基金会的知识分子优点和更广泛的影响评估标准,被认为值得通过评估来获得支持。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multi-Robot Information Gathering Subject to Resource Constraints
受资源限制的多机器人信息采集
Combining Remote and In-situ Sensing for Persistent Monitoring of Water Quality
结合遥感和现场传感来持续监测水质
  • DOI:
    10.1109/oceanschennai45887.2022.9775339
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rojas, Cesar A.;Reis, Gregory M.;Albayrak, Arif R.;Osmanoglu, Batuhan;Bobadilla, Leonardo;Smith, Ryan N.
  • 通讯作者:
    Smith, Ryan N.
Towards Learning Ocean Models for Long-term Navigation in Dynamic Environments
学习动态环境中长期导航的海洋模型
  • DOI:
    10.1109/oceanschennai45887.2022.9775460
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Padrao, Paulo;Dominguez, Alberto;Bobadilla, Leonardo;Smith, Ryan N.
  • 通讯作者:
    Smith, Ryan N.
Digital Twins Utilizing XR-Technology as Robotic Training Tools
利用 XR 技术作为机器人培训工具的数字孪生
  • DOI:
    10.3390/machines11010013
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Kaarlela, Tero;Padrao, Paulo;Pitkäaho, Tomi;Pieskä, Sakari;Bobadilla, Leonardo
  • 通讯作者:
    Bobadilla, Leonardo
Oblivious Markov Decision Processes: Planning and Policy Execution
忽视马尔可夫决策过程:规划和政策执行
  • DOI:
    10.1109/cdc49753.2023.10383231
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alsayegh, Murtadha;Fuentes, Jose;Bobadilla, Leonardo;Shell, Dylan A.
  • 通讯作者:
    Shell, Dylan A.
共 11 条
  • 1
  • 2
  • 3
前往

Leonardo Bobadilla其他文献

An Automated Methodology for Worker Path Generation and Safety Assessment in Construction Projects
建筑项目中工人路径生成和安全评估的自动化方法
Characterizing and Predicting Catalytic Residues in Enzyme Active Sites Based on Local Properties: A Machine Learning Approach
基于局部特性表征和预测酶活性位点中的催化残基:一种机器学习方法
Stochastic modeling, control, and verification of wild bodies
野生动物体的随机建模、控制和验证
Feedback Motion Planning for Long-Range Autonomous Underwater Vehicles
远程自主水下航行器的反馈运动规划
  • DOI:
  • 发表时间:
    2019
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Opeyemi S. Orioke;Tauhidul Alam;J. Quinn;Ramneek Kaur;Wesam H. Alsabban;Leonardo Bobadilla;Ryan N. Smith
    Opeyemi S. Orioke;Tauhidul Alam;J. Quinn;Ramneek Kaur;Wesam H. Alsabban;Leonardo Bobadilla;Ryan N. Smith
  • 通讯作者:
    Ryan N. Smith
    Ryan N. Smith
Minimalist multiple target tracking using directional sensor beams
使用定向传感器光束进行极简多目标跟踪
共 17 条
  • 1
  • 2
  • 3
  • 4
前往

Leonardo Bobadilla的其他基金

CC* Storage: EnviStor: A Repository for Supporting Collaborative Interdisciplinary Research on South Florida's Built and Natural Environments
CC* 存储:EnviStor:支持南佛罗里达州建筑和自然环境跨学科协作研究的存储库
  • 批准号:
    2322308
    2322308
  • 财政年份:
    2023
  • 资助金额:
    $ 9.75万
    $ 9.75万
  • 项目类别:
    Standard Grant
    Standard Grant
NRI: FND: Extending Autonomy in Seemingly Sensory-Denied Environments Applied to Underwater Robots
NRI:FND:在看似无感知的环境中扩展自主性,应用于水下机器人
  • 批准号:
    2024733
    2024733
  • 财政年份:
    2020
  • 资助金额:
    $ 9.75万
    $ 9.75万
  • 项目类别:
    Standard Grant
    Standard Grant

相似国自然基金

支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
  • 批准号:
    62371263
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
腙的Heck/脱氮气重排串联反应研究
  • 批准号:
    22301211
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
  • 批准号:
    52364038
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
  • 批准号:
    82371176
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
  • 批准号:
    82305286
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333604
    2333604
  • 财政年份:
    2024
  • 资助金额:
    $ 9.75万
    $ 9.75万
  • 项目类别:
    Standard Grant
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 9.75万
    $ 9.75万
  • 项目类别:
    Standard Grant
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 9.75万
    $ 9.75万
  • 项目类别:
    Standard Grant
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345581
    2345581
  • 财政年份:
    2024
  • 资助金额:
    $ 9.75万
    $ 9.75万
  • 项目类别:
    Standard Grant
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345582
    2345582
  • 财政年份:
    2024
  • 资助金额:
    $ 9.75万
    $ 9.75万
  • 项目类别:
    Standard Grant
    Standard Grant