喵ID:9jh9JC免责声明

Characterizing and Predicting Catalytic Residues in Enzyme Active Sites Based on Local Properties: A Machine Learning Approach

基于局部特性表征和预测酶活性位点中的催化残基:一种机器学习方法

基本信息

DOI:
10.1109/bibe.2007.4375671
发表时间:
2007
期刊:
2007 IEEE 7th International Symposium on BioInformatics and BioEngineering
影响因子:
--
通讯作者:
M. Patarroyo
中科院分区:
文献类型:
--
作者: Leonardo Bobadilla;Fernando Niño;Edilberto Cepeda;M. Patarroyo研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Developing computational methods for assigning protein function from tertiary structure is a very important problem, predicting a catalytic mechanism based only on structural information being a particularly challenging task. This work focuses on helping to understand the molecular basis of catalysis by exploring the nature of catalytic residues, their environment and characteristic properties in a large data set of enzyme structures and using this information to predict enzyme structures' active sites. A machine learning approach that performs feature extraction, clustering and classification on a protein structure data set is proposed. The 6,376 residues directly involved in enzyme catalysis, present in more than 800 proteins structures in the PDB were analyzed. Feature extraction provided a description of critical features for each catalytic residue, which were consistent with prior knowledge about them. Results from k-fold-cross-validation for classification showed more than 80% accuracy. Complete enzymes were scanned using these classifiers to locate catalytic residues.
开发从三级结构推断蛋白质功能的计算方法是一个非常重要的问题,仅基于结构信息预测催化机制是一项特别具有挑战性的任务。这项工作致力于通过探索大量酶结构数据集中催化残基的性质、其环境和特征特性,并利用这些信息预测酶结构的活性位点,来帮助理解催化的分子基础。提出了一种在蛋白质结构数据集上进行特征提取、聚类和分类的机器学习方法。对PDB(蛋白质数据库)中800多个蛋白质结构中直接参与酶催化的6376个残基进行了分析。特征提取为每个催化残基提供了关键特征的描述,这与先前对它们的了解是一致的。分类的k折交叉验证结果显示准确率超过80%。使用这些分类器对完整的酶进行扫描以定位催化残基。
参考文献(2)
被引文献(4)
The extended environment of mononuclear metal centers in protein structures
DOI:
10.1073/pnas.94.26.14225
发表时间:
1997-12-23
期刊:
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
影响因子:
11.1
作者:
Karlin, S;Zhu, ZY;Karlin, KD
通讯作者:
Karlin, KD

数据更新时间:{{ references.updateTime }}

M. Patarroyo
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓