IIBR:Informatics:RAPID: Structure-based identification of SARS-derived peptides with potential to induce broad protective immunity
IIBR:信息学:RAPID:基于结构的 SARS 衍生肽的鉴定,具有诱导广泛保护性免疫的潜力
基本信息
- 批准号:2033262
- 负责人:
- 金额:$ 11.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-15 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We are now living through a pandemic age caused by a novel strain of coronavirus (SARS-CoV-2) with a fast-growing number of confirmed cases all over the world. Several efforts are underway to produce new drug inhibitors, repurpose existing drugs and devise combination treatments. At the same time, vaccine development is targeting both neutralizing antibodies against envelope proteins of the virus, and long-term cell-mediated immunity based on T cell lymphocytes. T cell responses are particularly important for fighting viral infections, because they can find and eliminate infected cells. This project will use advanced methods of computational structural analysis to identify conserved small fragments (peptides) of SARS-CoV-2 viral proteins that can be used as targets for a broad-spectrum peptide-based vaccine, which could provide protective immunity against several strains of SARS-CoV-2 and potentially other SARS-like coronaviruses. The workflow will be shared by broad virology research community and any identified peptides will be directly related to SARS-CoV variants and other pathogen study, which will shorten vaccine and drug development cycle for any possible future new coronaviruses. Educating and training future researchers are planned through graduate and post-doc research mentoring, professional development, and career guidance. This project will develop a computational pipeline to enable the identification of peptides that are conserved across different SARS-CoV strains, and that can potentially be used to induce broad protective cellular immunity against these viruses. The approach is based on the combined use of gold-standard sequence-based methods, and new cutting-edge methods for the structural modeling and analysis of peptides bound to different Human Leukocyte Antigen (HLA) receptors. HLAs are responsible for displaying the peptides to T-cell lymphocytes, and the proposed pipeline will enable the identification of conserved hot-spots capable of triggering T-cell responses against multiple SARS-CoV variants. In the context of this project, research will target conserved peptides from the Nucleocapsid (N) protein of SARS-CoV-2. If needed, optimization of predicted peptides will be conducted for different prevalent HLA alleles. The proposed computational pipeline will be built using general software-engineering principles, making it also applicable to study different proteins from SARS-CoV variants, and even other pathogens. The work done on this project can be found in http://www.kavrakilab.org/nsf-rapid-sarscov2.html This RAPID award is made by the Infrastructure Innovation for Biological Research (IIBR Informatics) Program in the Division of Biological Infrastructure, using funds from the Coronavirus Aid, Relief, and Economic Security (CARES) Act.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
我们现在正处于由新型冠状病毒(SARS-CoV-2)引起的大流行时代,全世界确诊病例数量快速增长。目前正在进行多项努力来生产新的药物抑制剂、重新利用现有药物并设计联合治疗。与此同时,疫苗开发的目标是针对病毒包膜蛋白的中和抗体,以及基于 T 细胞淋巴细胞的长期细胞介导的免疫。 T 细胞反应对于对抗病毒感染特别重要,因为它们可以发现并消灭受感染的细胞。该项目将使用先进的计算结构分析方法来识别 SARS-CoV-2 病毒蛋白的保守小片段(肽),这些片段可用作广谱肽疫苗的靶标,从而提供针对多种病毒株的保护性免疫力SARS-CoV-2 和其他潜在的 SARS 样冠状病毒。该工作流程将由广泛的病毒学研究界共享,任何已识别的肽都将与 SARS-CoV 变体和其他病原体研究直接相关,这将缩短未来任何可能的新型冠状病毒的疫苗和药物开发周期。通过研究生和博士后研究指导、专业发展和职业指导来规划教育和培训未来的研究人员。 该项目将开发一个计算管道,以识别不同 SARS-CoV 毒株中保守的肽,并有可能用于诱导针对这些病毒的广泛保护性细胞免疫。该方法基于结合使用基于黄金标准序列的方法和新的尖端方法,用于对与不同人类白细胞抗原(HLA)受体结合的肽进行结构建模和分析。 HLA 负责向 T 细胞淋巴细胞展示肽,拟议的管道将能够识别能够触发针对多种 SARS-CoV 变体的 T 细胞反应的保守热点。在该项目中,研究将针对 SARS-CoV-2 核衣壳 (N) 蛋白的保守肽。如果需要,将对不同流行的 HLA 等位基因进行预测肽的优化。拟议的计算管道将使用通用软件工程原理构建,使其也适用于研究 SARS-CoV 变体甚至其他病原体的不同蛋白质。该项目完成的工作可以在 http://www.kavrakilab.org/nsf-rapid-sarscov2.html 中找到。该 RAPID 奖项由生物基础设施部门的生物研究基础设施创新 (IIBR 信息学) 项目颁发,使用来自冠状病毒援助、救济和经济安全 (CARES) 法案的资金。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lydia Kavraki其他文献
Lydia Kavraki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lydia Kavraki', 18)}}的其他基金
A Framework for Manipulation Planning and Execution under Uncertainty in Partially-Known Environments
部分已知环境中不确定性下的操纵规划和执行框架
- 批准号:
2336612 - 财政年份:2024
- 资助金额:
$ 11.97万 - 项目类别:
Standard Grant
Collaborative Research [FW-HTF-RM]: The Future of Nurse Training: Robotic Teaching Assistant Systems for Nursing Instructors
协作研究 [FW-HTF-RM]:护士培训的未来:护理讲师的机器人助教系统
- 批准号:
2326390 - 财政年份:2023
- 资助金额:
$ 11.97万 - 项目类别:
Standard Grant
Collaborative Research: FW-HTF-R: The Future of Robot-Assisted Nursing: Interactive AI Frameworks for Upskilling Nurses and Customizing Robot Assistance
合作研究:FW-HTF-R:机器人辅助护理的未来:用于提高护士技能和定制机器人辅助的交互式人工智能框架
- 批准号:
2222876 - 财政年份:2022
- 资助金额:
$ 11.97万 - 项目类别:
Standard Grant
RI: Small: A Novel Framework for Informed Manipulation Planning
RI:小型:知情操纵规划的新颖框架
- 批准号:
2008720 - 财政年份:2020
- 资助金额:
$ 11.97万 - 项目类别:
Standard Grant
NRI: FND: Robotic Collaboration through Scalable Reactive Synthesis
NRI:FND:通过可扩展反应合成进行机器人协作
- 批准号:
1830549 - 财政年份:2018
- 资助金额:
$ 11.97万 - 项目类别:
Standard Grant
RI: Small: Robot Motion Planning with an Experience Database
RI:小型:使用经验数据库进行机器人运动规划
- 批准号:
1718478 - 财政年份:2017
- 资助金额:
$ 11.97万 - 项目类别:
Standard Grant
SHF: Medium: Automating robot programming through constraint solving and motion planning
SHF:中:通过约束求解和运动规划实现机器人编程自动化
- 批准号:
1514372 - 财政年份:2015
- 资助金额:
$ 11.97万 - 项目类别:
Standard Grant
AF: Small: An Integrated Approach to Characterizing Conformational Changes of Large Proteins
AF:小:表征大蛋白质构象变化的综合方法
- 批准号:
1423304 - 财政年份:2014
- 资助金额:
$ 11.97万 - 项目类别:
Standard Grant
NRI: Small: Collaborative Research: Rethinking Motion Generation for Robots Operating in Human Workspaces
NRI:小型:协作研究:重新思考在人类工作空间中操作的机器人的运动生成
- 批准号:
1317849 - 财政年份:2013
- 资助金额:
$ 11.97万 - 项目类别:
Standard Grant
ABI Innovation: Mining Metabolic and Enzyme Databases for the Composition of Non-Canonical Pathways
ABI 创新:挖掘代谢和酶数据库以组成非规范途径
- 批准号:
1262491 - 财政年份:2013
- 资助金额:
$ 11.97万 - 项目类别:
Standard Grant
相似国自然基金
蛋白质降解决定因子的生物信息学筛选及其耐药突变的多组学分析研究
- 批准号:32300528
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于生物信息学的类风湿性关节炎患者衰弱预测模型的构建与验证
- 批准号:82301786
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于结构表征的蛋白质与长链非编码RNA相互作用预测的生物信息学方法研究
- 批准号:62373216
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
突变和修饰重塑蛋白质亚细胞定位的生物信息学研究
- 批准号:32370698
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
自身免疫性疾病精准诊疗中基于非编码RNA组学和生物信息学的新方法研究
- 批准号:82371855
- 批准年份:2023
- 资助金额:74 万元
- 项目类别:面上项目
相似海外基金
Optimizing integration of veterinary clinical research findings with human health systems to improve strategies for early detection and intervention
优化兽医临床研究结果与人类健康系统的整合,以改进早期检测和干预策略
- 批准号:
10764456 - 财政年份:2023
- 资助金额:
$ 11.97万 - 项目类别:
Elucidating Non-Routine Events Arising from Interhospital Transfers
阐明院间转移引起的非常规事件
- 批准号:
10749448 - 财政年份:2023
- 资助金额:
$ 11.97万 - 项目类别:
Developing a pragmatic guide to implementing social risk referrals: A partnership between Caring Health Center (CHC) and the Implementation Science Center for Cancer
制定实施社会风险转诊的实用指南:关爱健康中心 (CHC) 与癌症实施科学中心之间的合作伙伴关系
- 批准号:
10822141 - 财政年份:2023
- 资助金额:
$ 11.97万 - 项目类别:
Institute for Integration of Medicine & Science: A Partnership to Improve Health
医学整合研究所
- 批准号:
10704865 - 财政年份:2023
- 资助金额:
$ 11.97万 - 项目类别:
Investigation of brain-originating circRNAs as targets in blood-based stroke triage diagnostics
研究脑源性 circRNA 作为基于血液的中风分类诊断的靶标
- 批准号:
10563706 - 财政年份:2023
- 资助金额:
$ 11.97万 - 项目类别: