Novel Decomposition Techniques Enabling Scalable Computational Frameworks for Large-Scale Nonlinear Optimization Problems
新颖的分解技术为大规模非线性优化问题提供可扩展的计算框架
基本信息
- 批准号:2012410
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project aims to develop improved numerical optimization algorithms. The research considers situations in which decisions must be made in the absence of perfect information, either due to the lack of reliable data or due to unforeseen events. Most state-of-the-art methods tackle optimization in this setting by considering many potential scenarios, which can result in formulations that are too large to be solved directly. The methodology in this project is fundamentally different and aims to create new decomposition frameworks for large-scale nonlinear continuous optimization. The algorithms under development will be tested on realistic questions in electrical power systems. For example, the decomposition algorithm will be able to break down the optimization of a large-scale power grid into computations for the high-voltage transmission grid and computations related to the many distribution networks that are attached to the transmission grid. This project provides research training opportunities for a graduate student.The project aims to create novel decomposition frameworks that lead to new practical numerical algorithms able to tackle significantly larger instances of certain structured problems in nonlinear nonconvex optimization than currently possible. This will result in computational tools for the solution of stochastic optimization problems when sample average approximation gives rise to very large deterministic instances and will significantly expand the array of tractable stochastic two-stage and bi-level optimization problems. The key innovation is a smoothing technique that overcomes the predicament that optimal subsystem solutions need not be differentiable functions of the overarching system variables. In all aspects of the research, theory will be developed that characterizes the properties of problem reformulations and the convergence guarantees for new algorithms. One expected outcome of this project is high-quality open-source software for public use, capable of exploiting parallel computing resources.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该研究项目旨在开发改进的数值优化算法。该研究考虑了由于缺乏可靠数据或由于不可预见的事件而必须在缺乏完美信息的情况下做出决策的情况。大多数最先进的方法通过考虑许多潜在场景来解决这种情况下的优化问题,这可能会导致公式太大而无法直接求解。该项目的方法根本不同,旨在为大规模非线性连续优化创建新的分解框架。正在开发的算法将在电力系统的实际问题上进行测试。例如,分解算法将能够将大规模电网的优化分解为高压输电网的计算和与输电网相连的许多配电网相关的计算。该项目为研究生提供研究培训机会。该项目旨在创建新颖的分解框架,从而产生新的实用数值算法,能够解决非线性非凸优化中某些结构化问题的比目前更大的实例。当样本平均近似产生非常大的确定性实例时,这将产生用于解决随机优化问题的计算工具,并将显着扩展可处理的随机两阶段和双层优化问题的范围。关键的创新是平滑技术,它克服了最优子系统解决方案不必是总体系统变量的可微函数的困境。在研究的各个方面,将发展表征问题重构的特性和新算法的收敛保证的理论。该项目的预期成果之一是供公众使用的高质量开源软件,能够利用并行计算资源。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andreas Waechter其他文献
A complete nonlinear system solver using affine arithmetic
使用仿射算法的完整非线性系统求解器
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
A. Baharev;Endre R´ev;Jean;G. Trombettoni;Ignacio Araya;Arnold Neumaier;R. B. Kearfott;Lubomir Kolev;Andrew Makhorin;Stefan Vigerske;Andreas Waechter;Peter Spel;Renata Silva;Luis Nunes;Iain Duff;John K. Reid - 通讯作者:
John K. Reid
A Quadratically Convergent Sequential Programming Method for Second-Order Cone Programs Capable of Warm Starts
热启动二阶锥规划的二次收敛顺序规划方法
- DOI:
- 发表时间:
2022-07-07 - 期刊:
- 影响因子:0
- 作者:
Xin Luo;Andreas Waechter - 通讯作者:
Andreas Waechter
Andreas Waechter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andreas Waechter', 18)}}的其他基金
Algorithms for Nonlinear Nonconvex Optimization under Uncertainty
不确定性下的非线性非凸优化算法
- 批准号:
1522747 - 财政年份:2015
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Collaborative Research: Binary Constrained Convex Quadratic Programs with Complementarity Constraints and Extensions
协作研究:具有互补约束和扩展的二元约束凸二次规划
- 批准号:
1334639 - 财政年份:2013
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Novel Algorithms for Nonlinear Optimization
非线性优化的新算法
- 批准号:
1216920 - 财政年份:2012
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
相似国自然基金
耦合高效光吸收与载流子分离的Ta3N5梯度同质结的构建及太阳能水分解性能研究
- 批准号:22309104
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于聚庚嗪酰亚胺双金属配位调控构建高效(压电)光催化全分解水体系
- 批准号:52372179
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
三角范畴的半正交分解及其应用
- 批准号:12371042
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
山羊胃肠道微生物与上皮色氨酸分解代谢协同调控粘膜免疫屏障的机理
- 批准号:32372829
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
氮磷添加背景下杉木叶根凋落物分解调控土壤有机碳形成效率的分异机制
- 批准号:32371852
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
MCA: Characterizing Rhizosphere Decomposition with Novel Techniques in Contrasting Salt Marshes
MCA:用对比盐沼中的新技术表征根际分解
- 批准号:
2121019 - 财政年份:2021
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Development of novel techniques for production, aging and utilization of meat by the combination of proteolysis and the Maillard reaction
结合蛋白水解和美拉德反应开发肉类生产、熟化和利用的新技术
- 批准号:
21H02348 - 财政年份:2021
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
ELIMINATION OF AIRBORNE VOLATILE COMPOUNDS THROUGH INCORPORATION OF ADVANCED 3D NANOSTRUCTURED CATALYTIC COATINGS IN ADSORPTION/DECOMPOSITION AIR PURIFICATION SYSTEMS
通过在吸附/分解空气净化系统中采用先进的 3D 纳米结构催化涂层消除空气中的挥发性化合物
- 批准号:
10011057 - 财政年份:2020
- 资助金额:
$ 18万 - 项目类别:
Spectral-spatial filtering for efficient multi-material decomposition in x-ray CT
用于 X 射线 CT 中高效多材料分解的谱空间滤波
- 批准号:
9751293 - 财政年份:2018
- 资助金额:
$ 18万 - 项目类别:
Novel decomposition techniques for the solution of large and industrial scale optimization problems
用于解决大型工业规模优化问题的新颖分解技术
- 批准号:
475621-2015 - 财政年份:2016
- 资助金额:
$ 18万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral