Collaborative Research: Network Cluster: Bedrock controls on the deep critical zone, landscapes, and ecosystems

合作研究:网络集群:对深层关键区域、景观和生态系统的基岩控制

基本信息

项目摘要

The Critical Zone comprises the terrestrial environment from the tree canopy through the soil horizon and down to the base of weathered bedrock. This Critical Zone provides crucial services to humans and ecosystems, including the storage and filtering of groundwater, maintenance of streamflow, and long-term regulation of Earth’s climate. This project, part of the Critical Zone Collaborative Network, will establish the Bedrock Critical Zone Network that spans a wide range of climatic conditions across the continental US, ranging from a subtropical site in the South Carolina Piedmont to warm and dry sites in southern California. The principal goal is to improve knowledge of how subsurface processes in the deep Critical Zone influence water storage potential. In addition, the project will explore how water storage affects ecosystem resilience to disturbances such as prolonged drought. The research will involve direct sampling of subsurface materials via drilling and borehole logging together with non-invasive, indirect imaging techniques. The project will engage teachers, students, and the broader public in information sessions that emphasize the crucial importance of the Critical Zone, including development of a set of interactive 3D visualizations for use by educators.The Critical Zone extends from treetop to bedrock and thus includes both the substrate for life and the organisms that live at Earth’s land surface. In hilly and mountainous landscapes, where erosion at the surface exhumes underlying bedrock, the deepest reaches of the Critical Zone are where bedrock begins the weathering process, where fluids and gases first penetrate and react, where biota begin to colonize and interact with minerals, and where pore space begins to open. This project establishes the Bedrock Critical Zone Network to provide the scientific community with new knowledge of the deep Critical Zone and its feedbacks with surface processes and ecosystems. Observations and modeling at seven sites spanning a wide range of climatic and bedrock conditions in the continental US will test the hypothesis that Critical Zone structure, evolution, and processes are strongly influenced by bedrock conditions at the base of the Critical Zone. Mineralogy, ambient stress, and inherited fractures are influential factors, and these, in turn, are influenced by surface processes like erosion, subsurface flow, and ecosystem productivity. The project will address questions about fundamental deep Critical Zone properties and processes, including: controls on regolith thickness and its variation across landscapes; the relative importance and spatial variability of physical and chemical weathering; how subsurface weathering influences landscape evolution; and how deep Critical Zone water storage affects ecosystem resilience.The project will engage teachers, students, and the broader public on the crucial importance of the Critical Zone ; train scientists at diverse career stages on how to communicate; and promote diversity, inclusion, and equity in Critical-Zone science through targeted programs. The project will undertake an outreach and engagement program that includes a new set of interactive 3D visualizations, called the "Virtual Critical Zone," based on extensive imaging and measurements of roadcuts and quarries. This project will also include hands-on programs for high school teachers and students. All activities will support diversity and inclusion in Critical-Zone science through intentional recruiting and outreach. This project is jointly funded by the Critical Zone Collaborative Network, the Geomorphology and Land-use Dynamics programs in the Division of Earth Sciences, as well as the Education Program in the Geosciences Directorate.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
关键区包括从树冠到土壤层一直到风化基岩底部的陆地环境,该关键区为人类和生态系统提供重要的服务,包括地下水的储存和过滤、溪流的维持和长期的服务。该项目是关键区域合作网络的一部分,将建立涵盖美国大陆各种气候条件的基岩关键区域网络,范围从亚热带地区到美国。主要目标是提高对深部关键区域地下过程如何影响蓄水潜力的了解。此外,该项目还将探索蓄水如何影响生态系统对此类干扰的恢复能力。该研究将涉及通过钻探和钻孔测井以及非侵入性间接成像技术对地下物质进行直接采样,该项目将让教师、学生和广大公众参与信息会议,强调干旱的至关重要性。关键区域,包括开发一套互动供教育工作者使用的 3D 可视化。关键区域从树顶延伸到基岩,因此包括生命的基质和生活在丘陵和山地景观中的生物体,其中表面的侵蚀会挖掘出最深处的基岩。临界区的范围是基岩开始风化过程的地方,液体和气体首先渗透并发生反应的地方,生物群开始定居并与矿物质相互作用的地方,以及孔隙空间开始打开的地方。基岩临界区网络将为科学界提供有关深部临界区的新知识及其对地表过程和生态系统的反馈,在美国大陆的七个地点进行的各种气候和基岩条件的观测和建模将检验以下假设:关键带的结构、演化和过程受到关键带底部基岩条件的强烈影响,环境应力和继承性裂缝是影响因素,而这些又受到侵蚀、地下流动等地表过程的影响。和生态系统该项目将解决有关关键区域深层特性和过程的问题,包括:风化层厚度及其在景观中的变化;物理和化学风化的相对重要性和空间变化;地下风化如何影响景观演化;关键区蓄水影响生态系统的恢复力。该项目将使教师、学生和广大公众了解关键区的至关重要性;培训处于不同职业阶段的科学家如何在关键区进行沟通和促进多样性、包容性和公平性; -通过有针对性的计划进行区域科学。一项外展和参与计划,其中包括一套新的交互式 3D 可视化,称为“虚拟关键区域”,基于路堑和采石场的广泛成像和测量。该项目还将包括针对高中教师和学生的实践计划。所有活动都将通过有意招募和推广来支持关键区域科学的多样性和包容性。该项目由关键区域合作网络、地球科学部门的地貌学和土地利用动力学项目以及教育部门共同资助。程序该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
What Do P-Wave Velocities Tell Us About the Critical Zone?
P 波速度告诉我们关于临界区的什么信息?
  • DOI:
    10.3389/frwa.2021.772185
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Flinchum, Brady A.;Holbrook, W. Steven;Carr, Bradley J.
  • 通讯作者:
    Carr, Bradley J.
Groundwater Affects the Geomorphic and Hydrologic Properties of Coevolved Landscapes
地下水影响共同演化景观的地貌和水文特性
  • DOI:
    10.1029/2021jf006239
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Litwin, David G.;Tucker, Gregory E.;Barnhart, Katherine R.;Harman, Ciaran J.
  • 通讯作者:
    Harman, Ciaran J.
Matrix Diffusion as a Mechanism Contributing to Fractal Stream Chemistry and Long‐Tailed Transit Time Distributions
基质扩散作为一种有助于分形流化学和长尾渡越时间分布的机制
  • DOI:
    10.1029/2021gl094292
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Rajaram; Harihar
  • 通讯作者:
    Harihar
Quantifying Depth‐Dependent Seismic Anisotropy in the Critical Zone Enhanced by Weathering of a Piedmont Schist
量化深度——山前片岩风化增强的关键区域的相关地震各向异性
  • DOI:
    10.1029/2021jf006289
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Eppinger, B. J.;Hayes, J. L.;Carr, B. J.;Moon, S.;Cosans, C. L.;Holbrook, W. S.;Harman, C. J.;Plante, Z. T.
  • 通讯作者:
    Plante, Z. T.
Quantitative analysis of hillshed geomorphology and critical zone function: Raising the hillshed to watershed status
山地地貌和临界区功能的定量分析:将山地提升为流域地位
  • DOI:
    10.1130/b35724.1
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Brecheisen, Zachary S.;Richter, Daniel D.;Moon, Seulgi;Halpin, Patrick N.
  • 通讯作者:
    Halpin, Patrick N.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

W Steven Holbrook其他文献

W Steven Holbrook的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('W Steven Holbrook', 18)}}的其他基金

Collaborative Research: Imaging plate boundary processes within the Cascadia subduction zone offshore central Washington with open-access marine seismic data
合作研究:利用开放获取的海洋地震数据对华盛顿中部近海卡斯卡迪亚俯冲带内的板块边界过程进行成像
  • 批准号:
    1335066
  • 财政年份:
    2013
  • 资助金额:
    $ 158.01万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: A Short, Open-Access 2D MCS Acquisition Program off Washington State
RAPID:协作研究:华盛顿州附近的一个简短的、开放获取的 2D MCS 采集项目
  • 批准号:
    1150628
  • 财政年份:
    2012
  • 资助金额:
    $ 158.01万
  • 项目类别:
    Standard Grant
Collaborative Research: A Workshop Proposal for Improving Access to R/V Langseth Seismic Data
协作研究:改善 R/V Langseth 地震数据获取的研讨会提案
  • 批准号:
    1007796
  • 财政年份:
    2010
  • 资助金额:
    $ 158.01万
  • 项目类别:
    Standard Grant
Collaborative Research: Quantitative Estimates of Oceanic Turbulence and Temperature Structure from Seismic Reflection Data
合作研究:根据地震反射数据定量估计海洋湍流和温度结构
  • 批准号:
    0648620
  • 财政年份:
    2007
  • 资助金额:
    $ 158.01万
  • 项目类别:
    Standard Grant
Collaborative Research: Quantitative Investigation of Finestructure and Internal Waves in the Norwegian Sea from Simultaneous Temperature and Acoustic Reflectance Measurements
合作研究:通过同步温度和声反射测量对挪威海的精细结构和内波进行定量研究
  • 批准号:
    0452744
  • 财政年份:
    2005
  • 资助金额:
    $ 158.01万
  • 项目类别:
    Standard Grant
Collaborative Research: Seismic measurements of magma flux, arc composition, and lower-plate serpentinization in the Central American subduction factory
合作研究:中美洲俯冲工厂岩浆通量、弧成分和下盘蛇纹石化的地震测量
  • 批准号:
    0405654
  • 财政年份:
    2004
  • 资助金额:
    $ 158.01万
  • 项目类别:
    Continuing Grant
Depth-domain stratigraphic and structural analysis of seismic reflection data on the ODP Leg 210 transect, Newfoundland Basin rifted margin
纽芬兰盆地裂谷边缘 ODP Leg 210 横断面地震反射数据的深域地层和结构分析
  • 批准号:
    0241940
  • 财政年份:
    2003
  • 资助金额:
    $ 158.01万
  • 项目类别:
    Standard Grant
Methane Release in Submarine Landslides: A Seismic, Sedimentological, and Geochemical Study of the Storegga Slide, Offshore Norway
海底滑坡中的甲烷释放:挪威近海斯托雷加滑坡的地震、沉积学和地球化学研究
  • 批准号:
    0221366
  • 财政年份:
    2003
  • 资助金额:
    $ 158.01万
  • 项目类别:
    Standard Grant
SGER: Seismic reflection profiling of ocean thermohaline structure in the North Atlantic Ocean
SGER:北大西洋海洋温盐结构的地震反射剖面
  • 批准号:
    0337289
  • 财政年份:
    2003
  • 资助金额:
    $ 158.01万
  • 项目类别:
    Standard Grant
Margins: Collaborative Research: Seismic and geologic study of Gulf of California rifting and magmatism
边缘:合作研究:加利福尼亚湾裂谷和岩浆作用的地震和地质研究
  • 批准号:
    0112152
  • 财政年份:
    2002
  • 资助金额:
    $ 158.01万
  • 项目类别:
    Standard Grant

相似国自然基金

网络空间中基于泛配置类数据的协作性恶意行为识别研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
信息为中心网络缓存协同优化策略与验证方法研究
  • 批准号:
    61802014
  • 批准年份:
    2018
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
用户移动状态下的5G超密集异构网络自优化技术研究
  • 批准号:
    61871045
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于固定速率的多用户缓冲协作网络自适应传输模式选择策略研究
  • 批准号:
    61701066
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
面向人体运动干扰和生物安全的无线体域网协作通信技术研究
  • 批准号:
    61502476
  • 批准年份:
    2015
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Implementation Grant: Leading Inclusive Transformation in Geoscience via an Intercultural Network of Learning Ecosystems - LIT GEO
合作研究:实施资助:通过学习生态系统的跨文化网络引领地球科学的包容性转型 - LIT GEO
  • 批准号:
    2326733
  • 财政年份:
    2024
  • 资助金额:
    $ 158.01万
  • 项目类别:
    Continuing Grant
Collaborative Research: Implementation Grant: Leading Inclusive Transformation in Geoscience via an Intercultural Network of Learning Ecosystems - LIT GEO
合作研究:实施资助:通过学习生态系统的跨文化网络引领地球科学的包容性转型 - LIT GEO
  • 批准号:
    2326733
  • 财政年份:
    2024
  • 资助金额:
    $ 158.01万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 158.01万
  • 项目类别:
    Standard Grant
Collaborative Research: Implementation Grant: Leading Inclusive Transformation in Geoscience via an Intercultural Network of Learning Ecosystems - LIT GEO
合作研究:实施资助:通过学习生态系统的跨文化网络引领地球科学的包容性转型 - LIT GEO
  • 批准号:
    2326731
  • 财政年份:
    2024
  • 资助金额:
    $ 158.01万
  • 项目类别:
    Continuing Grant
Collaborative Research: Implementation Grant: Leading Inclusive Transformation in Geoscience via an Intercultural Network of Learning Ecosystems - LIT GEO
合作研究:实施资助:通过学习生态系统的跨文化网络引领地球科学的包容性转型 - LIT GEO
  • 批准号:
    2326731
  • 财政年份:
    2024
  • 资助金额:
    $ 158.01万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了