Difference Casimir Force Precision Measurements To Probe Long Wavelength Behavior

差分卡西米尔力精密测量来探测长波长行为

基本信息

  • 批准号:
    2012201
  • 负责人:
  • 金额:
    $ 54.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

According to the quantum theory of physics (which includes Planck black body radiation law and the Heisenberg uncertainty principle) empty space is not truly empty but is filled with zero point energy or quantum fluctuations. This can be related to the Heisenberg uncertainty principle, where in empty space the average energy has to be zero, but one can have non-zero energy fluctuations for short periods of time. For the electromagnetic force such fluctuations are referred to as zero point (or "virtual") photons (photons being particles of light). The existence of these zero point photons has been conclusively verified by Nobel Prize winning experiments. The presence of physical boundaries (for example by placing mirrors which reflect the light) leads to modifications of the allowed frequencies of the virtual photons and is referred to as the Casimir Effect. The change in the zero point photon energy caused by changing the boundary (i.e mirror) separation results in a force called the Casimir force. Forces resulting from zero point photons (e.g. the so-call "van der Waals forces") are central to many fields of science and play a critical role in molecular structure in chemistry, protein structure, and cell biology. In addition, because the Casimir force exceeds normal electromagnetic and gravitational effects in micromechanical devices with moving parts at submicron separations, there is a practical need to understand these effects. This project is quantitatively investigating the nature of these effects under a variety of geometrical configurations and temperatures in order to better understand and control them. The work is providing educational opportunities for a diverse range of students at a Hispanic-serving institution.The objective of this project is to understand zero point photon interaction with real materials. The Casimir force at non-zero temperature can arise from zero point photons as well as Planck black body thermal photons (real photons). Generalizations of the Casimir force for real metal plates follow the same approach for both zero point and real photon interactions. It is based on the fluctuation dissipation theorem where the electromagnetic fluctuations on the boundary are directly related to the dissipation from the imaginary term of the permittivity. Improvements in experimental precision have highlighted disagreements with the theory particularly for surface separations below 1.0 micron. The question that arises is: Are zero point photon interactions with materials the same as real photon interactions? The key differences are: (i) zero point photons cannot transfer net energy on interactions such as the case in Joule heating for real photon interactions with materials, and (ii) zero point photons do not simultaneously conserve energy-momentum relations (ω≠ kc) as they are Heisenberg fluctuations which are not "on the mass shell”. The photon wavelengths that primarily contribute to the Casimir force are of order the boundary separations. At room temperature and plate separations ~ 1 micron, the Casimir force comes overwhelmingly from zero point photons. As the peak of the Planck thermal spectrum is at a wavelength of 7.6 microns at room temperature (300 K), one intuitively expects that the additional thermal (real) photon contributions add to the force as the separation increases. Strangely, with the inclusion of dissipation, the thermal photon contribution is repulsive up to 6 microns. In this project, precision difference Casimir force measurements at separations up to 5 microns will be attempted in order to understand the long wavelength contributions of the zero point and thermal photons. Experiments to study their contribution together and by isolating the thermal photon contribution by screening out the zero point photon contribution will be attempted. By using different materials and different temperatures the scientists carrying out this project will vary the ratio of the zero point and thermal photon contributions. Instead of two plates, a sphere-plate arrangement avoids issues with keeping the plates perfectly parallel. The difference Casimir force will be measured between a periodically patterned gold plate and gold sphere. The periodic Casimir force will drive the cantilever attached to the sphere into resonance with a large amplitude which is measured with a lock-in. The patterned plate is either rotated or linearly translated under the sphere. The experimental data will be compared to the developed exact theories for the experimental configurations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
根据物理学的量子理论(包括普朗克黑体辐射定律和海森堡不确定性原理),真空并不是真正的空,而是充满了零点能量或量子涨落,这可以与海森堡不确定性原理相关,其中真空中的平均能量必须为零,但在短时间内可以具有非零能量波动,对于电磁力来说,这种波动被称为零点(或“虚拟”)光子(光子是粒子)。这些零点光子的存在已被诺贝尔奖获得者实验所证实。物理边界的存在(例如通过放置反射光的镜子)会导致虚拟光子的允许频率发生变化,并被提及。作为卡西米尔效应,由于改变边界(即镜子)分离而引起的零点光子能量的变化会产生由零点光子产生的力(例如所谓的“范德”)。 “瓦尔斯力”)是许多科学领域的核心,在化学、蛋白质结构和细胞生物学的分子结构中发挥着关键作用。此外,因为卡西米尔力超过了具有运动部件的微机械装置中的正常电磁和重力效应。亚微米分离中,实际需要了解这些效应,该项目正在定量研究各种几何结构和温度下这些效应的性质,以便更好地理解和控制它们。这项工作为不同范围的人提供了教育机会。该项目的目标是了解零点光子与真实材料的相互作用。非零温度下的卡西米尔力可以由零点光子以及普朗克黑体热光子(真实光子)产生。 ) 真实金属板的卡西米尔力的推广对于零点和真实光子相互作用都遵循相同的方法,它基于波动耗散定理,其中边界上的电磁波动与边界上的电磁波动直接相关。实验精度的提高凸显了与理论的分歧,特别是对于 1.0 微米以下的表面分离。由此产生的问题是:零点光子与材料的相互作用与真实光子的相互作用相同吗?是:(i)零点光子不能在相互作用中传递净能量,例如真实光子与材料相互作用的焦耳热情况,以及(ii)零点光子不能同时守恒能量动量关系(ω≠kc),因为它们是不在“质量壳上”的海森堡涨落,主要对卡西米尔力有贡献的光子波长是边界分离,在室温和板分离约 1 微米时,卡西米尔力。由于普朗克热谱的峰值在室温 (300 K) 下的波长为 7.6 微米,因此人们直观地预计额外的热量会产生。 (实际)光子贡献随着分离的增加而增加,奇怪的是,随着耗散的增加,热光子贡献在高达 6 微米的范围内是排斥的。为了了解零点光子和热光子的长波长贡献,将尝试通过使用不同的材料和不同的材料来共同研究它们的贡献,并通过筛选零点光子的贡献来隔离热光子的贡献。进行该项目的科学家将改变零点和热光子贡献的比率,而不是两个板,球板布置避免了保持板完全平行的问题。卡西米尔力的差异将在周期性图案之间进行测量。金板和金球。周期性的卡西米尔力将驱动附着在球体上的悬臂产生大振幅的共振,通过锁定来测量图案板在球体下方的旋转或线性平移。与发展相比该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Casimir effect in graphene systems: Experiment and theory
石墨烯系统中的卡西米尔效应:实验与理论
  • DOI:
    10.1142/s0217751x22410032
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Klimchitskaya, G. L.;Mohideen, U.;Mostepanenko, V. M.
  • 通讯作者:
    Mostepanenko, V. M.
Experimental and theoretical investigation of the thermal effect in the Casimir interaction from graphene
石墨烯卡西米尔相互作用热效应的实验和理论研究
  • DOI:
    10.1103/physrevb.104.085436
  • 发表时间:
    2021-08
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Liu, M.;Zhang, Y.;Klimchitskaya, G. L.;Mostepanenko, V. M.;Mohideen, U.
  • 通讯作者:
    Mohideen, U.
Virus Assembly Pathways Inside a Host Cell
宿主细胞内的病毒组装途径
  • DOI:
    10.1021/acsnano.1c06335
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    17.1
  • 作者:
    Panahandeh, Sanaz;Li, Siyu;Dragnea, Bogdan;Zandi, Roya
  • 通讯作者:
    Zandi, Roya
Demonstration of an Unusual Thermal Effect in the Casimir Force from Graphene
石墨烯卡西米尔力中异常热效应的演示
  • DOI:
    10.1103/physrevlett.126.206802
  • 发表时间:
    2021-05
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Liu, M.;Zhang, Y.;Klimchitskaya, G. L.;Mostepanenko, V. M.;Mohideen, U.
  • 通讯作者:
    Mohideen, U.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Umar Mohideen其他文献

Microdisk lasers
微盘激光器
  • DOI:
    10.1117/12.177164
  • 发表时间:
    1994
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Richard E. Slusher;S. L. Mccall;Umar Mohideen;A. F. J. Levi
  • 通讯作者:
    A. F. J. Levi
A Brief Review of Some Recent Precision Casimir Force Measurements
最近一些精密卡西米尔力测量的简要回顾
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Madhav Dhital;Umar Mohideen
  • 通讯作者:
    Umar Mohideen
Synthesis, Insertion, and Characterization of SARS-CoV-2 Membrane Protein Within Lipid Bilayers
脂质双层内 SARS-CoV-2 膜蛋白的合成、插入和表征
  • DOI:
    10.1101/2023.09.30.560318
  • 发表时间:
    2023-10-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuanzhong Zhang;Sara Anbir;Joseph McTiernan;Siyu Li;Mike Worcester;Pratyasha Mishra;M. Colvin;Ajay Gopinathan;Umar Mohideen;R. Z;i;i;Thomas E. Kuhlman
  • 通讯作者:
    Thomas E. Kuhlman
GaAs/AlGaAs microdisk lasers
GaAs/AlGaAs 微盘激光器
  • DOI:
    10.1063/1.111740
  • 发表时间:
    1994-04-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Umar Mohideen;W. S. Hobson;S. J. Pearton;Fan Ren;Richart E. Slusher
  • 通讯作者:
    Richart E. Slusher

Umar Mohideen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Umar Mohideen', 18)}}的其他基金

High Precision Casimir Force Measurements
高精度卡西米尔力测量
  • 批准号:
    1607749
  • 财政年份:
    2016
  • 资助金额:
    $ 54.88万
  • 项目类别:
    Continuing Grant
Probing the Coherent Scattering of Zero-point Photons in the Casimir Force using Diffraction Gratings
使用衍射光栅探测卡西米尔力中零点光子的相干散射
  • 批准号:
    0970161
  • 财政年份:
    2010
  • 资助金额:
    $ 54.88万
  • 项目类别:
    Continuing Grant
Investigation of the role of geometry, thermal photons and their interplay in the electromagnetic Casimir force
研究几何形状、热光子及其在电磁卡西米尔力中的相互作用
  • 批准号:
    0653657
  • 财政年份:
    2007
  • 资助金额:
    $ 54.88万
  • 项目类别:
    Continuing Grant
Collective Boundary Effects in Nanoscale Electromagnetic Casimir Forces
纳米级电磁卡西米尔力中的集体边界效应
  • 批准号:
    0355092
  • 财政年份:
    2004
  • 资助金额:
    $ 54.88万
  • 项目类别:
    Continuing Grant
NER: Exploratory Research on the Control of Nanoscale Shape Dependent Casimir Forces
NER:纳米级形状相关卡西米尔力控制的探索性研究
  • 批准号:
    0103060
  • 财政年份:
    2001
  • 资助金额:
    $ 54.88万
  • 项目类别:
    Standard Grant

相似国自然基金

融合范畴的Casimir不变量与Grothendieck代数的表示
  • 批准号:
    12371041
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
基于多体散射观点的微纳机电系统中多体Casimir相互作用研究
  • 批准号:
    12304396
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
纳米体系中多界面Casimir摩擦的研究
  • 批准号:
    12164027
  • 批准年份:
    2021
  • 资助金额:
    38 万元
  • 项目类别:
    地区科学基金项目
基于原子—腔光力混合系统的动态Casimir效应及其应用研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目
基于阴影法的高精度大范围卡西米尔力测量
  • 批准号:
    51805367
  • 批准年份:
    2018
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

EELS analysis of surface plasmon vibrational modes as the origin of short-range Casimir force
作为短程卡西米尔力起源的表面等离子体振动模式的 EELS 分析
  • 批准号:
    18K04872
  • 财政年份:
    2018
  • 资助金额:
    $ 54.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
High Precision Casimir Force Measurements
高精度卡西米尔力测量
  • 批准号:
    1607749
  • 财政年份:
    2016
  • 资助金额:
    $ 54.88万
  • 项目类别:
    Continuing Grant
Critical Casimir force between spheres and planes: Monte Carlo simulations of spin models
球体和平面之间的临界卡西米尔力:自旋模型的蒙特卡罗模拟
  • 批准号:
    238391646
  • 财政年份:
    2013
  • 资助金额:
    $ 54.88万
  • 项目类别:
    Research Grants
RUI: Precision Casimir Force Measurements Using a High-Sensitivity Torsion Balance
RUI:使用高灵敏度扭力天平进行精密卡西米尔力测量
  • 批准号:
    1307150
  • 财政年份:
    2013
  • 资助金额:
    $ 54.88万
  • 项目类别:
    Standard Grant
EAGER: Study of Casimir Force Engineering by Modeling and Implementing Novel Three-dimensional Structures
EAGER:通过建模和实现新型三维结构来研究卡西米尔力工程
  • 批准号:
    1206155
  • 财政年份:
    2012
  • 资助金额:
    $ 54.88万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了