Collaborative Research: SaTC: CORE: Small: Privacy protection of Vehicles location in Spatial Crowdsourcing under realistic adversarial models
合作研究:SaTC:核心:小:现实对抗模型下空间众包中车辆位置的隐私保护
基本信息
- 批准号:2029976
- 负责人:
- 金额:$ 27.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In vehicle-based spatial crowdsourcing (VSC), requesters can outsource their tasks to a group of vehicles, which are required to physically move to tasks' locations to perform services or tasks. To promote a cost-effective task distribution, vehicles need to disclose their location information to VSC servers. Location sharing however raises serious privacy concerns related not only to whereabouts of the vehicles but also to sensitive information such as drivers’ home/working address, sexual preferences, financial status, etc. Current privacy protection mechanisms for location-services include location obfuscation methods according to mobility patterns projected on a 2-dimensional plane, wherein users can move in arbitrary directions without any restriction. Obfuscation algorithms based on a 2-dimensional plane are unable to provide strong privacy guarantees of vehicles whose mobility is restricted by road networks, since road networks and traffic patterns facilitate vehicle tracking and trajectory estimation. This research project aims to develop new location privacy protection techniques by considering vehicles’ realistic mobility features, and consequently lead to a more secure and trustworthy computing environment in VSC. This project paves the way for a more realistic body of work on location privacy, particularly regarding location-based services (LBSs). As privacy concerns are still among the main obstacles for mobile users to participate in many advanced LBSs, this project is poised to contribute to the wider adoption of LBSs for many applications (e.g. location-based recommendation systems). In addition, the project provides a set of diverse and interesting topics for undergraduate and graduate students and outreach activities for the community. The project consists of three tasks. First, the project starts with developing new adversarial models to capture the network-constrained mobility features of multiple vehicles operating over roads. Vehicles’ mobility is described by a Bayesian network, i.e., the exact and the reported locations of vehicles are considered as hidden and observable states, respectively, and the spatial correlation between hidden states can be learned from the road network environment and traffic flow information. Second, as a countermeasure for the adversarial models, the project develops a new location obfuscation paradigm that can effectively protect vehicles' location privacy without compromising quality-of-service (QoS), even assuming that adversaries can leverage vehicles’ mobility features for inference attacks. Since the impact of location obfuscation on both privacy level and QoS vary significantly over different road segments, the new location obfuscation methods are designed to be adaptive to various local road network conditions. Finally, considering the scalability and the dynamics of VSC, the project applies distributed and parallel computing techniques (e.g., optimization decomposition) to guarantee the obfuscation algorithms to be implemented in a time-efficient manner.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在基于车辆的空间众包(VSC)中,请求可以将其任务外包给一组车辆,这是从物理移动到任务的位置以执行服务或任务所必需的。为了促进具有成本效益的任务分配,车辆需要向VSC服务器披露其位置信息。但是,位置共享不仅引起了严重的隐私问题,不仅与车辆的下落有关,而且还与敏感信息有关,例如驾驶员的家庭/工作地址,性偏好,财务状况等。当前的位置服务的隐私保护机制包括位置混淆方法,包括在不带任何仲裁的仲裁范围内提出的次要飞机上预测的依据的移动性模式。基于二维平面的混淆算法无法提供由道路网络限制的车辆的强大隐私保证,因为道路网络和交通模式有助于车辆跟踪和轨迹估计。该研究项目旨在通过考虑车辆的现实移动性功能来开发新的位置隐私保护技术,从而在VSC中带来更安全和值得信赖的计算环境。该项目为在位置隐私方面的更现实的工作铺平了道路,尤其是基于位置的服务(LBSS)。由于隐私问题仍然是移动用户参与许多高级LBSS的主要障碍,因此该项目被毒死,可以为许多应用程序(例如基于位置的推荐系统)广泛采用LBS。此外,该项目为本科生和研究生提供了一系列潜水员和有趣的主题,并为社区提供了外展活动。该项目由三个任务组成。首先,该项目始于开发新的对抗模型,以捕获在道路上运行的多辆车的网络约束移动性功能。车辆的移动性由贝叶斯网络描述,即,车辆的确切位置和报告的位置分别被视为隐藏和可观察的状态,并且可以从道路网络环境和交通流量信息中学到隐藏状态之间的空间相关性。其次,作为对抗模型的对策,该项目开发了一个新的位置混淆范式,可以有效地保护车辆的位置隐私而不会损害服务质量(QOS),甚至假设对手可以利用车辆的移动性用于推理攻击。由于位置混淆对隐私级别和QoS的影响在不同的道路细分市场上差异很大,因此新的位置混淆方法旨在适应各种当地的道路网络条件。 Finally, considering the scalability and the dynamics of VSC, the project applies distributed and parallel computing techniques (e.g., optimization decomposition) to guarantee the obfuscation algorithms to be implemented in a time-efficient manner.This award reflects NSF's statutory mission and has been deemed honestly of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dongwon Lee其他文献
A Multi-Level Theory Approach to Understanding Price Rigidity in Internet Retailing
理解互联网零售价格刚性的多层次理论方法
- DOI:
10.17705/1jais.00230 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
R. Kauffman;Dongwon Lee - 通讯作者:
Dongwon Lee
Understanding emotions in SNS images from posters' perspectives
从海报的角度理解 SNS 图像中的情感
- DOI:
10.1145/3341105.3373923 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Junho Song;Kyungsik Han;Dongwon Lee;Sang - 通讯作者:
Sang
The Development of Argument-based Modeling Strategy Using Scientific Writing
利用科学写作开发基于论证的建模策略
- DOI:
10.14697/jkase.2014.34.5.0479 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Hey Sook Cho;Jeonghee Nam;Dongwon Lee - 通讯作者:
Dongwon Lee
COX-2 Mediated Induction of Endothelium-independent Contraction to Bradykinin in Endotoxin-treated Porcine Coronary Artery
COX-2介导的内毒素处理的猪冠状动脉中对缓激肽的不依赖于内皮的收缩的诱导
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:3
- 作者:
A. More;H. M. Kim;Ru Zhao;G. Khang;T. Hildebrandt;Christian Bernlöhr;H. Doods;Dongwon Lee;S. H. Lee;P. Vanhoutte;Dongmei Wu - 通讯作者:
Dongmei Wu
Pragmatic XML Access Control Using Off-the-Shelf RDBMS
使用现成的 RDBMS 进行实用的 XML 访问控制
- DOI:
10.1007/978-3-540-74835-9_5 - 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Bo Luo;Dongwon Lee;Peng Liu - 通讯作者:
Peng Liu
Dongwon Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dongwon Lee', 18)}}的其他基金
Collaborative Research: CISE-MSI: RCBP-RF: SaTC: Building Research Capacity in AI Based Anomaly Detection in Cybersecurity
合作研究:CISE-MSI:RCBP-RF:SaTC:网络安全中基于人工智能的异常检测的研究能力建设
- 批准号:
2131144 - 财政年份:2022
- 资助金额:
$ 27.28万 - 项目类别:
Standard Grant
EAGER: SaTC-EDU: A Framework for Developing Attributable Cybersecurity Case Studies
EAGER:SaTC-EDU:开发可归因网络安全案例研究的框架
- 批准号:
2114824 - 财政年份:2021
- 资助金额:
$ 27.28万 - 项目类别:
Standard Grant
REU Site: Machine Learning in Cybersecurity
REU 网站:网络安全中的机器学习
- 批准号:
1950491 - 财政年份:2020
- 资助金额:
$ 27.28万 - 项目类别:
Standard Grant
Vertical Search Engine and Graph Homomorphism for Enhancing the Cybersecurity Workforce
用于增强网络安全劳动力的垂直搜索引擎和图同态
- 批准号:
1934782 - 财政年份:2019
- 资助金额:
$ 27.28万 - 项目类别:
Standard Grant
Collaborative Research: Precision Learning: Data-Driven Experimentation of Learning Theories using Internet-of-Videos
协作研究:精准学习:使用视频互联网进行数据驱动的学习理论实验
- 批准号:
1940076 - 财政年份:2019
- 资助金额:
$ 27.28万 - 项目类别:
Standard Grant
Developing and Evaluating Fraud Informatics Curriculum among Institutions in the Appalachian Region
开发和评估阿巴拉契亚地区机构之间的欺诈信息学课程
- 批准号:
1820609 - 财政年份:2018
- 资助金额:
$ 27.28万 - 项目类别:
Standard Grant
Penn State's CyberCorps; Scholarship for Service Program
宾夕法尼亚州立大学的 CyberCorps;
- 批准号:
1663343 - 财政年份:2017
- 资助金额:
$ 27.28万 - 项目类别:
Continuing Grant
EAGER: Training Computers and Humans to Detect Misinformation by Combining Computational and Theoretical Analysis
EAGER:通过结合计算和理论分析来训练计算机和人类检测错误信息
- 批准号:
1742702 - 财政年份:2017
- 资助金额:
$ 27.28万 - 项目类别:
Standard Grant
CAREER: User-Centered Multiparty Access Control for Collective Content Management
职业:以用户为中心的多方访问控制,用于集体内容管理
- 批准号:
1453080 - 财政年份:2015
- 资助金额:
$ 27.28万 - 项目类别:
Continuing Grant
SBE TWC: Small: Collaborative: Privacy Protection in Social Networks: Bridging the Gap Between User Perception and Privacy Enforcement
SBE TWC:小型:协作:社交网络中的隐私保护:弥合用户感知和隐私执行之间的差距
- 批准号:
1422215 - 财政年份:2014
- 资助金额:
$ 27.28万 - 项目类别:
Standard Grant
相似国自然基金
支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
- 批准号:62371263
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
腙的Heck/脱氮气重排串联反应研究
- 批准号:22301211
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
- 批准号:52364038
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
- 批准号:82371176
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
- 批准号:82305286
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317232 - 财政年份:2024
- 资助金额:
$ 27.28万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
- 批准号:
2330940 - 财政年份:2024
- 资助金额:
$ 27.28万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338301 - 财政年份:2024
- 资助金额:
$ 27.28万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317233 - 财政年份:2024
- 资助金额:
$ 27.28万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338302 - 财政年份:2024
- 资助金额:
$ 27.28万 - 项目类别:
Continuing Grant