RAPID - Impact of Coronaviridae lipid, protein and RNA interaction on copper, zinc, and their derivatives coated personal protective equipment surfaces and viral infectivity
RAPID - 冠状病毒科脂质、蛋白质和 RNA 相互作用对铜、锌及其衍生物涂覆的个人防护装备表面和病毒感染性的影响
基本信息
- 批准号:2029579
- 负责人:
- 金额:$ 9.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Personal protective equipment (PPE), such as face masks, gloves and surgical gowns, forms the primary barrier for medical, healthcare and laboratory workers for protection against contact with severe acute respiratory syndrome coronavirus (SARS-CoV-2). The virus lives on the surface of currently available PPE materials for many days. Recent evidence suggests that copper or copper zinc oxide composites with antimicrobial activity may inactivate virus. However, the mechanism for this is poorly understood at present. This project will test the hypothesis that PPE surfaces coated with copper or zinc oxide nanoparticles (NANO-PPE) will cause denaturation and degradation of viral biomolecules, thus leading to viral inactivation. The project sheds new insight into hybrid materials containing these biotic metals on the PPE surface, especially characterizing their interactions to biomaterials such as lipid, protein or RNA and the impact on structure-function. The RAPID project draws on several complementary areas of technology including, nanomaterial surface chemistry and processes, biophysics, biochemistry, and virology. This provides a unique interdisciplinary training environment for a diverse group of post-graduate, graduate and undergraduate students to engage in this cutting-edge research. Societal impact is that NANO-PPE stands to inactivate virus on contact, better protecting personnel from viral infection and thus limiting community spread, and long-term may help protect against other healthcare associated infections and drug resistant bacteria. This project is jointly funded by the Chemical, Bioengineering, Environmental and Transport Systems (CBET) Division and the Established Program to Stimulate Competitive Research (EPSCoR).The primary objective of this RAPID project is to gain a more fundamental understanding of nanoscale interactions of viral or viral-mimetic lipid, protein and RNA to PPE materials surface-coated with copper or copper/zinc oxide composites. The goals of the project are; 1) to fabricate PPE materials coated with copper and/or zinc oxide nanoparticles, mixtures and composites, 2) to characterize their nano-bio interactions and quantify the biomolecular denaturation and degradation caused by the nanoscale interaction, and 3) to place surrogate respiratory virus in contact with NANO-PPE and determine functional impact on viral titer and infectivity. Standard industrial scale processes such as electrospinning and deep coating will be used to coat the surface of PPE (face-mask, nitrile glove and surgical gown) with copper and zinc oxide nanoparticles. Surface interactions with the viral lipid, protein and RNA will be investigated by transmission electron microscopy, FT-IR, Raman/Photoluminescence, and x-ray photoelectron spectroscopy. Biomolecular denaturation and degradation will be quantified by 2-dimensional fluorescence difference spectroscopy, circular dichroism, gel electrophoresis, tryptic digestion and liquid chromatography/mass spectroscopy. Finally, viral titer and RT-PCR will be used to quantify impact of nanoscale interaction on biological activity. Overall, the experiments will probe structure-functional impact of nanoscale interaction of virus and its inhibition by coming into contact with NANO-PPE. The project will be integrated into a graduate class in Nanomedicine within a unit on nanoscale interactions and characterization methods and into the PI and co-PIs research programs involving undergraduate, masters, PhD and post-doctoral students. Products of this research will be translated to a corporate partner for rapid manufacturing and introduction into the healthcare and laboratory supply chain. This project is jointly funded by the Chemical, Bioengineering, Environmental and Transport Systems (CBET) Division and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
个人防护设备(PPE),例如面罩,手套和手术礼服,构成了医疗,医疗保健和实验室工人的主要障碍,以防止与严重的急性呼吸综合症冠状病毒(SARS-COV-2)接触。该病毒生活在当前可用的PPE材料的表面上很多天。最近的证据表明,具有抗菌活性的铜或氧化氧化锌复合材料可能会使病毒失活。但是,目前对此的机制知之甚少。该项目将检验以下假设:涂有铜或氧化锌纳米颗粒(纳米PPE)的PPE表面将导致病毒生物分子的变性和降解,从而导致病毒失活。该项目对PPE表面上包含这些生物金属的混合材料提供了新的见解,尤其是表征了它们与脂质,蛋白质或RNA等生物材料的相互作用以及对结构功能的影响。快速项目借鉴了几个互补的技术领域,包括纳米材料表面化学和过程,生物物理学,生物化学和病毒学。这为多样化的研究生,研究生和本科生提供了独特的跨学科培训环境,以参与这项尖端的研究。社会影响是,纳米PPE会在接触时使病毒失活,更好地保护人员免受病毒感染的侵害,从而限制了社区的传播,并且长期可以帮助防止其他相关的医疗保健相关感染和耐药菌。 This project is jointly funded by the Chemical, Bioengineering, Environmental and Transport Systems (CBET) Division and the Established Program to Stimulate Competitive Research (EPSCoR).The primary objective of this RAPID project is to gain a more fundamental understanding of nanoscale interactions of viral or viral-mimetic lipid, protein and RNA to PPE materials surface-coated with copper or copper/zinc oxide composites.该项目的目标是; 1)制造涂有铜和/或氧化锌纳米颗粒的PPE材料,混合物和复合材料,2)以表征其纳米生物相互作用,并量化由纳米级相互作用引起的生物分子变性和降解,以及3)将替代性呼吸道病毒与Nano-Pppe的效果相接触,并确定功能性的功能。标准的工业尺度工艺(例如静电纺丝和深涂层)将用铜和氧化锌纳米颗粒覆盖PPE(面罩,硝化机手套和手术礼服)的表面。将通过透射电子显微镜,FT-IR,拉曼/光致发光和X射线光电子光谱法研究与病毒脂质,蛋白质和RNA的表面相互作用。 生物分子变性和降解将通过二维荧光差异光谱,圆形二色性,凝胶电泳,胰蛋白酶消化和液相色谱/质谱法来量化。最后,病毒滴度和RT-PCR将用于量化纳米级相互作用对生物学活性的影响。 总体而言,实验将通过与纳米PPE接触而探测病毒的纳米相互作用及其抑制作用的结构功能。该项目将在纳米医学互动和表征方法的单元中集成到纳米医学的研究生类中,以及涉及本科,硕士,博士学位和博士后学生的PI和Co-PIS研究计划。这项研究的产品将转化为快速制造和介绍医疗保健和实验室供应链的公司合作伙伴。 该项目由化学,生物工程,环境和运输系统(CBET)部门和启发竞争研究的既定计划(EPSCOR)共同资助。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的审查标准来通过评估来获得支持的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Natasha Gaudreault其他文献
Crucial for Viral Replication and Virulence Herpesvirus 1-encoded Bicp0 Protein Is the Zinc Ring Finger of Bovine
对病毒复制和毒力至关重要的疱疹病毒 1 编码的 Bicp0 蛋白是牛的锌环指
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Jones Leticia;Da Silva;Gail Henderson;Alan Doster;Clinton Kazima Saira;Shafiqul Chowdhury;Natasha Gaudreault - 通讯作者:
Natasha Gaudreault
Natasha Gaudreault的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
猫冠状病毒非结构蛋白调控宿主IL-6释放影响其致病性的分子机制
- 批准号:32370164
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
NLRP3炎症小体通过拮抗I型干扰素反应影响人季节性冠状病毒复制的机制研究
- 批准号:82300014
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
探索新型冠状病毒在鼻腔粘膜上皮中的适应性进化以及相关的宿主因素对病毒致病力和传播性的影响
- 批准号:82302493
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
新型冠状病毒受体结合域关键氨基酸突变对其免疫逃逸、受体结合力及免疫原性的影响及其机制研究
- 批准号:32100123
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
猪冠状病毒S蛋白影响组织嗜性差异的分子基础
- 批准号:32130106
- 批准年份:2021
- 资助金额:281 万元
- 项目类别:重点项目
相似海外基金
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
$ 9.99万 - 项目类别:
Studentship
Understanding how pollutant aerosol particulates impact airway inflammation
了解污染物气溶胶颗粒如何影响气道炎症
- 批准号:
2881629 - 财政年份:2027
- 资助金额:
$ 9.99万 - 项目类别:
Studentship
Impact of Urban Environmental Factors on Momentary Subjective Wellbeing (SWB) using Smartphone-Based Experience Sampling Methods
使用基于智能手机的体验采样方法研究城市环境因素对瞬时主观幸福感 (SWB) 的影响
- 批准号:
2750689 - 财政年份:2025
- 资助金额:
$ 9.99万 - 项目类别:
Studentship
Understanding the Impact of Outdoor Science and Environmental Learning Experiences Through Community-Driven Outcomes
通过社区驱动的成果了解户外科学和环境学习体验的影响
- 批准号:
2314075 - 财政年份:2024
- 资助金额:
$ 9.99万 - 项目类别:
Continuing Grant
What is the impact of increasing boreal forest fires on Arctic climate and sea ice?
北方森林火灾的增加对北极气候和海冰有何影响?
- 批准号:
2337045 - 财政年份:2024
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant