RAPID: Molecular Imprinting of Coronavirus Attachment Factors to Enhance Disinfection by a Selective Photocatalytic “Trap-and-Zap” Approach

RAPID:冠状病毒附着因子的分子印记,通过选择性光催化“Trap-and-Zap”方法增强消毒效果

基本信息

  • 批准号:
    2029339
  • 负责人:
  • 金额:
    $ 18.79万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-05-01 至 2023-04-30
  • 项目状态:
    已结题

项目摘要

The virus that causes COVID-19 (i.e., SARS-CoV-2) has been found in air ducts, suggesting that it could spread around buildings via air conditioning systems. SARS-CoV-2 is also shed in stool despite patients testing negative, and thus it may reach wastewater treatment plants, where it could survive for days and be aerosolized or discharged in the effluent. In fact, there are reports that SARS-CoV-2 may spread through bathroom pipes. Although coronaviruses can be inactivated by some conventional water treatment processes, there is an urgent need for more precise viral disinfection approaches that are fast, efficient and reliable under realistic scenarios. The objective of this project is to develop a novel approach for selective adsorption and photocatalytic disinfection (i.e., trap-and-zap) of SARS-CoV-2 and other pathogenic coronaviruses. This would result in a chemical-free technology (thus avoiding harmful disinfection byproducts) with unprecedented precision and reliable efficiency to inactivate coronavirus. The driving hypothesis is that molecular imprinting of graphitic carbon nitride with common coronavirus attachment factors will enable selective virus adsorption near reactive sites, resulting in reliably high disinfection. Whereas enhancing the capacity and resiliency of wastewater disinfection and hospital air sterilization systems to protect public health against emerging infectious diseases has significant intrinsic merit, the benefits of this project are much broader. This project will enhance surface recognition of various types of coronavirus (e.g., those causing COVID-19, MERS and SARS), which will inform efforts to concentrate them and improve both precision separation (e.g., by superior sorbents) and detection limits of sensors that can be used in diagnostics and surveillance efforts. Project results will be integrated into various courses, including the NanoEnvironmental Engineering for Teachers (NEET) course at Rice, which enrolls 15 teachers that reach over 3,300 high school students annually. This course recently expanded to Arizona State University and is also being expanded to the University of Texas at El Paso, thereby ensuring wide dissemination of this “trap-and-zap” approach to STEM teachers.This project builds on a recently published, nanotechnology-enabled “trap-and-zap” approach (enhanced by molecular imprinting), to selectively adsorb antibiotic resistant genes and concentrate them near photocatalytic sites for efficient degradation (doi.org/10.1021/acs.est.9b06926). This approach will be modified to target SARS-CoV-2 and other coronavirus by imprinting molecules involved in virus attachment such as sialic acids, heparin sulfate proteoglycan, and angiotensin-converting enzyme–related carboxypeptidase (ACE2)-associated peptides onto the graphitic carbon nitride photocatalysts. When the imprinted molecule is removed (e.g., by acid washing), it leaves behind a target-specific cavity that enables selective adsorption and photocatalytic inactivation with minimum interference by background water constituents. Low pathogenic coronavirus HCoV-NL63 (which, similarly to SARS-CoV 2, is enveloped with an S spike protein and uses the same cell surface molecule ACE2 as host receptor) will be used to assess adsorption kinetics and selectivity of molecularly imprinted-gC3N4 in the presence of competing proteins (such as bovine serum albumin) and bacteriophage MS2. Inactivation efficiency will be assessed by quantifying residual viable virus concentrations, using the plaque assay with Avicel overlay. Specific tasks include to (1) select a model coronavirus (e.g., HCoV-NL63) and attachment factors for molecular imprinting; (2) prepare homogenous, stable, biomolecular materials for imprinting; (3) synthesize the molecularly-imprinted catalyst; (4) characterize adsorption kinetics and selectivity of target coronavirus particles to the molecularly-imprinted catalyst; (5) benchmark virus inactivation efficiency of the molecularly imprinted -coated catalyst against traditional disinfection methods (chlorination, ultraviolet irradiation) under realistic conditions; and (6) assess durability and reuse potential of the molecularly imprinted catalyst Project results will be integrated into various courses, including the NanoEnvironmental Engineering for Teachers (NEET) course at Rice, which enrolls 15 teachers that reach over 3,300 high school students annually. This course recently expanded to Arizona State University and is also being expanded to the University of Texas at El Paso, thereby ensuring wide dissemination of this “trap-and-zap” approach to STEM teachers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在空气管道中发现了导致COVID-19的病毒(即SARS-COV-2),这表明它可以通过空调系统围绕建筑物散布。尽管患者对阴性进行了测试,但SARS-COV-2也被粪便脱落,因此它可能到达废水处理厂,在该植物中可以生存几天,并在效果中被雾化或排出。实际上,有报道称SARS-COV-2可能通过浴室管道扩散。尽管某些常规的水处理过程可能会使冠状病毒灭活,但迫切需要在现实情况下快速,有效且可靠的更精确的病毒消毒方法。该项目的目的是开发一种新的方法,用于选择性吸附和光催化消毒(即SARS-COV-2和其他致病性冠状病毒)。这将导致具有前所未有的精确性和可靠效率的冠状病毒的无化学技术(避免有害的消毒副产品)。驱动假设是,用常见的冠状病毒附着因子对图形碳的分子印记将使反应性位点附近的选择性病毒吸附,从而导致可靠的高消毒。尽管增强废水消毒和医院空气灭菌系统的能力和弹性以保护公共卫生免受现成的传染病的固有优点具有显着的内在优点,但该项目的好处更为广泛。该项目将增强对各种类型的冠状病毒(例如,造成Covid-19,MERS和SAR的冠状病毒)的表面认识,这将为他们集中注意力并改善精度分离(例如,通过上级吸附剂)和传感器的检测限制,以及可用于诊断和监视工作的传感器的检测限制。项目结果将纳入各种课程,包括赖斯的教师(NEET)课程的纳米环境工程,该课程每年招募15名教师,每年有3,300多名高中生。 This course recently expanded to Arizona State University and is also being expanded to the University of Texas at El Paso, thereby ensuring wide dissemination of this “trap-and-zap” approach to STEM teachers.This project builds on a recently published, nanotechnology-enabled “trap-and-zap” approach (enhanced by molecular imprinting), to selectively adsorb antibiotic resistant genes and concentrate them near有效降解的光催化位点(doi.org/10.1021/acs.est.9b06926)。这种方法将通过刻有参与病毒附着的分子(例如唾液酸,硫酸肝素硫酸盐蛋白聚糖)和血管紧张素转化酶相关的羧二肽酶(ACE2)粘合的宠物的图形二氧化碳质碳质碳质碳质碳质碳质碳质碳质碳质氧化核酸盐,将这种方法修改为靶向SARS-COV-2和其他冠状病毒。当去除印迹分子(例如,通过酸洗)时,它留在目标特异性腔内,从而实现了选择性的添加吸收和光催化失活,而背景水构成的最小干扰。低致病性冠状病毒HCOV-NL63(与SARS-COV 2相似,用S尖峰蛋白包裹,并使用相同的细胞表面分子ACE2作为宿主受体)将用于评估吸附动力学和在竞争性的MSEREPAME MSERECAIRE SEREEMIAN COPERIAICE SEREIN(例如serepaire serepaire serepair seremine seremine seremine boviin and)中,用来评估分子添加的GC3N4的选择性和选择性。使用AVICEL覆盖的斑块测定法,将通过量化残留的活病毒浓度来评估灭活效率。特定任务包括(1)选择模型冠状病毒(例如HCOV-NL63)和分子印记的附着因子; (2)制备同质,稳定的生物分子材料,用于印记; (3)合成分子催化剂; (4)将目标冠状病毒颗粒的添加吸附动力学和对分子刻度催化剂的选择性的选择性; (5)在现实条件下,针对传统的消毒方法(氯化,紫外线照射)的分子涂料催化剂的基准病毒灭活效率; (6)评估耐久性和分子印迹催化剂项目结果的重复使用潜力将融入各种课程中,包括赖斯的教师纳米环境工程(NEET)课程,该课程每年招募15名教师,每年超过3,300名高中生。该课程最近扩展到亚利桑那州立大学,并正在扩展到埃尔帕索的德克萨斯大学,从而确保了对STEM教师的这种“陷阱和zap”方法的广泛传播。该奖项反映了NSF的法定任务,并通过使用该基金会的知识分子和更广泛的影响来评估CRITERIA CRITEIA CRITERIA。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Protein‐imprinted particles for coronavirus capture from solution
  • DOI:
    10.1002/jssc.202200543
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Naomi L Senehi;Matthew Ykema;Ruonan Sun;R. Verduzco;L. Stadler;Y. Tao;Pedro J. J. Alvarez-Pedro-J.-J.-Alvarez-2057275828
  • 通讯作者:
    Naomi L Senehi;Matthew Ykema;Ruonan Sun;R. Verduzco;L. Stadler;Y. Tao;Pedro J. J. Alvarez-Pedro-J.-J.-Alvarez-2057275828
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pedro Alvarez其他文献

Food protein-based microspheres for increased uptake of vitamin D<sub>3</sub>
  • DOI:
    10.1016/j.foodchem.2014.10.112
  • 发表时间:
    2015-04-15
  • 期刊:
  • 影响因子:
  • 作者:
    Fatoumata Diarrassouba;Ghislain Garrait;Gabriel Remondetto;Pedro Alvarez;Eric Beyssac;Muriel Subirade
  • 通讯作者:
    Muriel Subirade
DySPAN Spectrum Challenge: Situational Awareness and Opportunistic Spectrum Access Benchmarked
DySPAN 频谱挑战:态势感知和机会频谱接入基准
Down-regulation of Drosophila Glutactin, a cholinesterase-like adhesion molecule of the basement membrane, impairs development, compromises adult function and shortens lifespan
果蝇谷胱甘肽(一种基底膜的胆碱酯酶样粘附分子)的下调会损害发育,损害成体功能并缩短寿命
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pedro Alvarez;Shawna S. Guillemette;R. Humphrey;B. Ballif;J. Vigoreaux
  • 通讯作者:
    J. Vigoreaux
The impact of physician-directed and patient-directed education on screening, diagnosis, treatment, and referral patterns for urinary incontinence
医生指导和患者指导的教育对尿失禁筛查、诊断、治疗和转诊模式的影响
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    S. Eckhardt;Y. Takashima;J. Zigman;V. Yuan;Pedro Alvarez;Christina Truong;Tajnoos Yazdany
  • 通讯作者:
    Tajnoos Yazdany

Pedro Alvarez的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pedro Alvarez', 18)}}的其他基金

NSF Nanosystems Engineering Research Center for Nantechnology Enabled Water Treatment Systems (NEWT)
NSF 纳米系统纳米技术水处理系统工程研究中心 (NEWT)
  • 批准号:
    1449500
  • 财政年份:
    2015
  • 资助金额:
    $ 18.79万
  • 项目类别:
    Cooperative Agreement
Workshop on Applications of Nanotechnology in the Water Sector:Emerging Opportunities and Challenges for Water Treatment and Reuse, Monte Verita, Switzerland, May 15-18, 2011
纳米技术在水领域的应用研讨会:水处理和再利用的新机遇和挑战,瑞士蒙特维里塔,2011 年 5 月 15-18 日
  • 批准号:
    1100755
  • 财政年份:
    2011
  • 资助金额:
    $ 18.79万
  • 项目类别:
    Standard Grant
Collaborative Research: Developing Novel Surface Immobilized Photocatalysts Using Functionalized C60
合作研究:使用功能化 C60 开发新型表面固定光催化剂
  • 批准号:
    0933219
  • 财政年份:
    2009
  • 资助金额:
    $ 18.79万
  • 项目类别:
    Standard Grant
C60 Biotransformation and Bioaccumulation: Environmental Impact Implications
C60 生物转化和生物累积:环境影响的影响
  • 批准号:
    0829158
  • 财政年份:
    2008
  • 资助金额:
    $ 18.79万
  • 项目类别:
    Standard Grant
Correlation between Biomarker Concentrations and Hydrocarbon Biodegradation Rates to Enhance the Selection and Performance Assessment of Bioremediation and Natural Attenuation
生物标志物浓度与碳氢化合物生物降解率之间的相关性,以加强生物修复和自然衰减的选择和性能评估
  • 批准号:
    0729700
  • 财政年份:
    2007
  • 资助金额:
    $ 18.79万
  • 项目类别:
    Continuing Grant
NSF CAREER Award Proposal Writing Workshop
NSF 职业奖提案写作研讨会
  • 批准号:
    0533400
  • 财政年份:
    2005
  • 资助金额:
    $ 18.79万
  • 项目类别:
    Standard Grant
SGER: Remediation of PAHs in the Rhizosphere of Tropical Plants
SGER:热带植物根际 PAH 的修复
  • 批准号:
    0450285
  • 财政年份:
    2004
  • 资助金额:
    $ 18.79万
  • 项目类别:
    Standard Grant
International Workshop: U.S.-Latin American Caribbean Environmental Problems and Sustainable Solutions, Cartagena, Colombia, May 2004
国际研讨会:美国-拉丁美洲加勒比环境问题和可持续解决方案,哥伦比亚卡塔赫纳,2004 年 5 月
  • 批准号:
    0412046
  • 财政年份:
    2004
  • 资助金额:
    $ 18.79万
  • 项目类别:
    Standard Grant
U.S.-Brazil Planning Visit: Environmental Impacts of Ethanol in Gasoline
美国-巴西计划访问:汽油中乙醇对环境的影响
  • 批准号:
    0410145
  • 财政年份:
    2004
  • 资助金额:
    $ 18.79万
  • 项目类别:
    Standard Grant
SGER: Remediation of PAHs in the Rhizosphere of Tropical Plants
SGER:热带植物根际 PAH 的修复
  • 批准号:
    0224561
  • 财政年份:
    2002
  • 资助金额:
    $ 18.79万
  • 项目类别:
    Standard Grant

相似国自然基金

分子烙印钙钛矿型氧化物多段式镀膜空芯光纤用于多组分有机气体传感研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
分子烙印钙钛矿型氧化物多段式镀膜空芯光纤用于多组分有机气体传感研究
  • 批准号:
    62105217
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目
基于分子烙印技术的波罗蜜属植物中异戊烯基黄酮类组织蛋白酶K抑制剂的快速发现
  • 批准号:
    81360475
  • 批准年份:
    2013
  • 资助金额:
    48.0 万元
  • 项目类别:
    地区科学基金项目
金丝桃素分子烙印聚合物膜的制备及其分子识别机制研究
  • 批准号:
    21076191
  • 批准年份:
    2010
  • 资助金额:
    36.0 万元
  • 项目类别:
    面上项目
饲料基质中碘化酪蛋白的检测技术研究
  • 批准号:
    30771577
  • 批准年份:
    2007
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Molecular imprinting strategy to rationally design porous solid acid catalysts for C-C coupling chemistries
职业:分子印迹策略合理设计用于 C-C 偶联化学的多孔固体酸催化剂
  • 批准号:
    2340993
  • 财政年份:
    2024
  • 资助金额:
    $ 18.79万
  • 项目类别:
    Continuing Grant
Molecular determinants of sex-specific DNA methylation signature acquisition in the mammalian germline
哺乳动物种系中性别特异性 DNA 甲基化特征获取的分子决定因素
  • 批准号:
    10723071
  • 财政年份:
    2023
  • 资助金额:
    $ 18.79万
  • 项目类别:
Role of PRMT7 in Genomic Imprinting
PRMT7 在基因组印记中的作用
  • 批准号:
    10714206
  • 财政年份:
    2023
  • 资助金额:
    $ 18.79万
  • 项目类别:
Neuronal and genetic imprints of male mating experience
男性交配经历的神经元和遗传印记
  • 批准号:
    10752146
  • 财政年份:
    2023
  • 资助金额:
    $ 18.79万
  • 项目类别:
The genome integrity and epigenome of sperm from men with recurrent pregnancy loss
反复流产男性精子的基因组完整性和表观基因组
  • 批准号:
    10556688
  • 财政年份:
    2023
  • 资助金额:
    $ 18.79万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了