Collaborative Research: Aerodynamic Shape Optimization of Tall Buildings using Automated Cyber-Physical Testing

合作研究:利用自动化网络物理测试对高层建筑进行空气动力学形状优化

基本信息

  • 批准号:
    2028647
  • 负责人:
  • 金额:
    $ 28.55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-01-01 至 2024-12-31
  • 项目状态:
    已结题

项目摘要

This award will focus on the optimal design of a tall building’s shape to meet competing performance objectives from multiple stakeholders, including its performance under wind loads. A building’s shape is one of the earliest design decisions and has a decisive impact on the building’s underlying structural system, performance under service and extreme loads, life-cycle costs, and architectural appeal. In current practice, design is often based on shapes that have historically provided good performance. Trial-and-error approaches are used with a few tests carried out in a wind tunnel, leaving significant portions of the search space unexplored, and therefore, design favors conventional shapes over innovative solutions. To address these shortcomings, this award will develop an automated approach that brings together numerical search algorithms, experimental wind tunnel testing, and advanced manufacturing for a systematic and exhaustive search of the design space. This research will help drive the future of engineering design as it trends toward optimization and automation while also addressing fundamental research questions in wind engineering. The collaboration in this project between a research-intensive university and a Hispanic-serving institution/primarily undergraduate institution will provide a unique opportunity to engage students from underrepresented minority groups in cutting-edge research, thus increasing the diversity of professionals in the field and producing globally competitive engineering graduates to match the demand for skilled STEM professionals. Project data will be archived and made publicly available in the NSF-supported Natural Hazards Engineering Research Infrastructure (NHERI) Data Depot (https://www.DesignSafe-CI.org). This award will contribute to NSF's role in the National Windstorm Impact Reduction Program (NWIRP). This research will bring together traditional wind tunnel experimental methods and automated design techniques to test three fundamental hypotheses on the design of tall buildings for wind loading: (i) intelligent computing, cyber-physical testing, and hybrid manufacturing can be leveraged to efficiently explore the geometric design space, (ii) the geometric design space can be explored as a continuum to fundamentally change the optimization outcomes, and (iii) the formulation of the optimization problem will have a significant impact on the optimal shape. This research will leverage hybrid manufacturing to create and precisely modify wind tunnel specimens, enabling a close integration of shape optimization and wind tunnel testing. Testing will be done using the NSF-supported NHERI boundary layer wind tunnel at the University of Florida. New knowledge will be generated, including: (i) heuristic optimization algorithms that are suitable for exploring optimal structural shapes, (ii) surrogate models that can reduce the number of wind tunnel experiments, (iii) hybrid manufacturing systems that combine additive and subtractive machining to efficiently and cost-effectively modify building models, and (iv) parameterization methods that allow for discovery of non-intuitive aerodynamic features to reduce along-wind and across-wind structural responses. This research will enable the intelligent experimental exploration of candidate designs and, therefore, has the potential to discover new and innovative solutions to deliver taller, lighter, and more sustainable buildings.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项将重点关注高层建筑形状的优化设计,以满足多个利益相关者相互竞争的性能目标,包括其在风荷载下的性能,建筑物的形状是最早的设计决策之一,对建筑物的底层结构系统具有决定性影响。 、使用和极端负载下的性能、生命周期成本和建筑吸引力在当前实践中,设计通常基于历史上提供良好性能的形状,并在其中进行一些测试。风洞,留下很大一部分搜索空间为了解决这些缺点,该奖项将开发一种自动化方法,将数值搜索算法、实验风洞测试和先进制造结合起来,对设计空间进行系统和详尽的搜索。这项研究将有助于推动工程设计的未来走向优化和自动化,同时解决风工程的基础研究问题。提供独特的机会吸引来自以下国家的学生项目数据将在 NSF 支持的自然灾害工程中存档并公开提供。研究基础设施 (NHERI) 数据仓库 (https://www.DesignSafe-CI.org) 该奖项将有助于 NSF 在国家风暴影响减少计划 (NWIRP) 中发挥作用。这项研究将汇集传统的风洞实验方法。和自动化设计技术来测试高层建筑风荷载设计的三个基本假设:(i)可以利用智能计算、网络物理测试和混合制造来有效地探索几何设计空间,(ii)几何设计空间可以作为一个连续体进行探索,从根本上改变优化结果,并且(iii)优化问题的制定将对最佳形状产生重大影响。这项研究将利用混合制造来创建和精确修改风洞样本,从而实现。形状优化和风洞测试的紧密结合。将使用佛罗里达大学 NSF 支持的 NHERI 边界层风洞来完成,将产生新知识,包括:(i)适合探索最佳结构形状的启发式优化算法,(ii)可以减少的替代模型。风洞实验的数量,(iii) 混合制造系统,将增材加工和减材加工相结合,以高效且经济高效地修改建筑模型,以及 (iv) 参数化方法,允许发现非直观的空气动力学特征,以减少这项研究将能够对候选设计进行智能实验探索,因此有可能发现新的创新解决方案,以建造更高、更轻、更可持续的建筑。该奖项反映了 NSF 的法定奖项。使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhaoshuo Jiang其他文献

Engaging Community College Students in Earthquake Engineering Research with Smart Wearable Devices
利用智能可穿戴设备让社区学院的学生参与地震工程研究
  • DOI:
    10.18260/1-2--29215
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alexander Sebastian Furlanic;Philip A. Thomas;Panfilo Jesus Armas;Rene Parra Medina;Jackie Lok;A. Enriquez;W. Pong;Cheng Chen;K. Teh;Xiaorong Zhang;H. Mahmoodi;Zhaoshuo Jiang
  • 通讯作者:
    Zhaoshuo Jiang
Engaging Community College Students in Emerging Human-Machine Interfaces Research through Design and Implementation of a Mobile Application for Gesture Recognition
通过设计和实现手势识别移动应用程序让社区大学生参与新兴人机界面研究
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kattia Chang;Karina Abad;Ricardo Jesus Colin;Charles P. Tolentino;C. Malloy;Alex David;A. Enriquez;W. Pong;Zhaoshuo Jiang;Cheng Chen;K. Teh;H. Mahmoodi;Hao Jiang;Xiaorong Zhang
  • 通讯作者:
    Xiaorong Zhang
Using Infrasound-based Information for Non-destructive Structural Health Monitoring
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhaoshuo Jiang
  • 通讯作者:
    Zhaoshuo Jiang
Implementation of a Probabilistic Structural Health Monitoring Method on a Highway Bridge
公路桥梁概率结构健康监测方法的实施
  • DOI:
    10.1155/2012/307515
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    A. Scianna;Zhaoshuo Jiang;R. Christenson;J. DeWolf
  • 通讯作者:
    J. DeWolf

Zhaoshuo Jiang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhaoshuo Jiang', 18)}}的其他基金

REU SITE: Collaborative Research: Integrated Academia-Industry Research Experience for Undergraduate in Smart Structure Technology (IAIRESST)
REU 网站:合作研究:智能结构技术本科生学术界与工业界的综合研究经验 (IAIRESST)
  • 批准号:
    1659877
  • 财政年份:
    2017
  • 资助金额:
    $ 28.55万
  • 项目类别:
    Standard Grant

相似国自然基金

智能汽车空气动力学问题的流动机理与规律研究
  • 批准号:
    52372355
  • 批准年份:
    2023
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
跨声速阶段机翼斜置角切换动态过程非对称/非定常空气动力学-飞行动力学耦合机理研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
翅膀残缺昆虫的运动学观测、空气动力学和动稳定性研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    61 万元
  • 项目类别:
    面上项目
基于计算流体力学的孔子鸟空气动力学性能模拟与飞行能力研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
仿生多扑翼复杂尾迹相互作用的空气动力学机制研究
  • 批准号:
    12072013
  • 批准年份:
    2020
  • 资助金额:
    62 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: HCC: Medium: Aerodynamic Virtual Human Simulation on Face, Body, and Crowd
合作研究:HCC:媒介:面部、身体和人群的空气动力学虚拟人体模拟
  • 批准号:
    2313075
  • 财政年份:
    2023
  • 资助金额:
    $ 28.55万
  • 项目类别:
    Standard Grant
Collaborative Research: HCC: Medium: Aerodynamic Virtual Human Simulation on Face, Body, and Crowd
合作研究:HCC:媒介:面部、身体和人群的空气动力学虚拟人体模拟
  • 批准号:
    2313074
  • 财政年份:
    2023
  • 资助金额:
    $ 28.55万
  • 项目类别:
    Standard Grant
Collaborative Research: HCC: Medium: Aerodynamic Virtual Human Simulation on Face, Body, and Crowd
合作研究:HCC:媒介:面部、身体和人群的空气动力学虚拟人体模拟
  • 批准号:
    2313076
  • 财政年份:
    2023
  • 资助金额:
    $ 28.55万
  • 项目类别:
    Standard Grant
Collaborative Research: Aerodynamic Shape Optimization of Tall Buildings using Automated Cyber-Physical Testing
合作研究:利用自动化网络物理测试对高层建筑进行空气动力学形状优化
  • 批准号:
    2028762
  • 财政年份:
    2021
  • 资助金额:
    $ 28.55万
  • 项目类别:
    Standard Grant
Collaborative Research: The aerodynamic and metabolic costs and benefits of flow interactions in bird flight
合作研究:鸟类飞行中流动相互作用的空气动力学和代谢成本和效益
  • 批准号:
    1930924
  • 财政年份:
    2020
  • 资助金额:
    $ 28.55万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了