Collaborative Research: GOALI - Nonlinear Coupling in Pulsed Electronegative Plasmas: Multiple-sources, Multiple-frequencies, Multiple-time scales

合作研究:GOALI - 脉冲负电等离子体中的非线性耦合:多源、多频率、多时间尺度

基本信息

项目摘要

Society critically depends on computers, cell phones and a myriad of specialized electrical circuits in nearly every technological product we use, from cars to door openers. What is not widely known is that these electrical circuits are largely contained in small semiconductor chips, that the dimensions of components of those circuits are approaching the size of atoms, and that the circuits are produced in machines containing the fourth state of matter – plasma. Plasmas are ionized gases that can produce chemically reactive environments, and are composed of a mix of positive ions, negative ions, electrons and neutral atoms and molecules. Low pressure plasmas are essential to the fabrication of microelectronics devices by delivering fluxes of radicals and ions to a semiconductor wafer. These radicals and ions then etch (remove material), deposit (add material) and passivate (change surface composition) the wafer surface through many fabrication steps to create the devices. A voltage is also applied to the substrate holding the wafer to accelerate ions to high energies in order to activate these on-wafer processes. An important type of plasma used in microelectronics fabrication is an electronegative plasma in which the density of negative ions is much larger than electrons. These plasmas are very sensitive to operating conditions (such as power, pressure and gas mixture), with instabilities often. The quality of the devices being fabricated are sensitive to these instabilities and so tighter control of the plasma process is becoming more important. Pulsing the plasma (turning the power on-and-off) and pulsing the acceleration voltage results in higher precision components with smaller dimensions, whiich translates into more powerful electronics devices. Although pulsing provides many advantages, pulsing also produces instabilities. In order to optimize the plasma processes that are used to manufacture microelectronics devices, these instabilities in electronegative plasmas must be understood, controlled and, if possible, prevented.In this project, experimental and computational investigations of pulsed electronegative plasmas are being conducted for the type of inductively coupled plasmas (ICPs) that are used for microelectronics fabrication. The goal is to quantify the interactions between the pulsed sources that produce the plasma and the pulsed biases that accelerate ions into the wafer, the onset of instabilities, and methods to control those instabilities. This investigation is being conducted in collaboration with our GOALI partner Lam Research Corp. We are making 3-dimensional, time dependent measurements of electron density, temperature, plasma potential, current density, magnetic fields and ion energy distributions using laser and electrical probe diagnostics. First principles modeling is being used to investigate fundamental plasma transport during pulsed transients, electrostatic-to-electromagnetic (E-H) transitions and interactions of pulsed sources and biases. The end result will be a greatly improved understanding of pulsed electronegative plasmas of the type used for materials processing, with this understanding being rapidly translated to practice by our GOALI partner.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
社会严重依赖于计算机、手机以及我们使用的几乎所有技术产品(从汽车到开门器)中的无数专用电路,但不为人所知的是,这些电路主要包含在小型半导体芯片中。这些电路的组成部分接近原子的大小,并且这些电路是在含有第四种物质状态——等离子体的机器中产生的。低压等离子体通过将自由基和离子流传递到半导体晶片来制造微电子器件,然后蚀刻(去除材料)、沉积(添加材料)和钝化(改变)。 (表面成分)通过许多制造步骤来制造器件的晶圆表面,还将电压施加到固定晶圆的基板上,以将离子加速到高能量,从而激活这些晶圆上工艺。微电子制造中使用的等离子体的重要类型是负电等离子体,其中负离子的密度比电子大得多,这些等离子体对操作条件(例如功率、压力和气体混合物)非常敏感,并且质量经常不稳定。所制造的器件对这些不稳定性很敏感,因此对等离子体工艺的更严格控制变得更加重要,脉冲等离子体(打开和关闭电源)和脉冲加速电压可以产生更高精度的元件。尽管脉冲提供了许多优势,但脉冲也会产生不稳定性,为了优化用于制造微电子设备的等离子体工艺,必须了解和控制负电等离子体中的这些不稳定性。在该项目中,正在针对用于微电子制造的感应耦合等离子体(ICP)类型进行脉冲负电等离子体的实验和计算研究。旨在量化产生等离子体的脉冲源与加速离子进入晶圆的脉冲偏压之间的相互作用、不稳定性的发生以及控制这些不稳定性的方法。这项研究是与我们的 GOALI 合作伙伴 Lam Research Corp 合作进行的。我们正在使用激光和电探针诊断对电子密度、温度、等离子体电势、电流密度、磁场和离子能量分布进行 3 维、时间相关的测量,用于研究脉冲期间的等离子体基本传输。瞬态、静电到电磁(E-H)转变以及脉冲源和偏置的相互作用,最终结果将大大提高对用于材料加工的脉冲电负性等离子体的理解,并且这种理解将被我们迅速转化为实践。 GOALI 合作伙伴。这反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Erosion of focus rings in capacitively coupled plasma etching reactors
电容耦合等离子体蚀刻反应器中聚焦环的腐蚀
  • DOI:
    10.1116/6.0001225
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Wang, Xifeng;Lee, Hyunjae;Nam, Sang Ki;Kushner, Mark J.
  • 通讯作者:
    Kushner, Mark J.
Voltage waveform tailoring for high aspect ratio plasma etching of SiO 2 using Ar/CF 4 /O 2 mixtures: Consequences of ion and electron distributions on etch profiles
使用 Ar/CF 4 /O 2 混合物对 SiO 2 进行高深宽比等离子体蚀刻的电压波形定制:离子和电子分布对蚀刻轮廓的影响
  • DOI:
    10.1116/6.0002290
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Krüger, Florian;Lee, Hyunjae;Nam, Sang Ki;Kushner, Mark J.
  • 通讯作者:
    Kushner, Mark J.
Scaling of silicon nanoparticle growth in low temperature flowing plasmas
低温流动等离子体中硅纳米粒子生长的缩放
  • DOI:
    10.1063/5.0062255
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Lanham, Steven J.;Polito, Jordyn;Shi, Xuetao;Elvati, Paolo;Violi, Angela;Kushner, Mark J.
  • 通讯作者:
    Kushner, Mark J.
Plasma-enhanced atomic layer deposition of SiO 2 film using capacitively coupled Ar/O 2 plasmas: A computational investigation
使用电容耦合 Ar/O 2 等离子体等离子体增强原子层沉积 SiO 2 薄膜:计算研究
  • DOI:
    10.1116/6.0001121
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Qu, Chenhui;Sakiyama, Yukinori;Agarwal, Pulkit;Kushner, Mark J.
  • 通讯作者:
    Kushner, Mark J.
Electric field reversals resulting from voltage waveform tailoring in Ar/O 2 capacitively coupled plasmas sustained in asymmetric systems
不对称系统中持续存在的 Ar/O 2 电容耦合等离子体中电压波形调整导致的电场反转
  • DOI:
    10.1088/1361-6595/ac14a7
  • 发表时间:
    2021-08
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Krüger, Florian;Lee, Hyunjae;Nam, Sang Ki;Kushner, Mark J
  • 通讯作者:
    Kushner, Mark J
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Kushner其他文献

Prolonged Sinus Arrest Complicating a Thrombotic Stroke
长时间的窦性停搏使血栓性中风复杂化

Mark Kushner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Kushner', 18)}}的其他基金

Collaborative Research: ECO-CBET: Methane Conversion by Merging Atmospheric Plasma with Transition-Metal Catalysis
合作研究:ECO-CBET:通过大气等离子体与过渡金属催化相结合进行甲烷转化
  • 批准号:
    2032604
  • 财政年份:
    2020
  • 资助金额:
    $ 26.7万
  • 项目类别:
    Continuing Grant
GCR: Collaborative Research: Plasma-Biofilm Interactions at the Intersection of Physics, Chemistry, Biology and Engineering
GCR:合作研究:物理、化学、生物学和工程学交叉点的等离子体-生物膜相互作用
  • 批准号:
    2020010
  • 财政年份:
    2020
  • 资助金额:
    $ 26.7万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding Plasma-Liquid Interactions Through Controlled Plasma-Microdroplet Experiments and Modeling
合作研究:通过受控等离子体-微滴实验和建模了解等离子体-液体相互作用
  • 批准号:
    1902878
  • 财政年份:
    2019
  • 资助金额:
    $ 26.7万
  • 项目类别:
    Standard Grant
A Workshop on Science Challenges in Low Temperature Plasma Science and Engineering: Enabling a Future Based on Electricity through Non-Equilibrium Plasma Chemistry
低温等离子体科学与工程科学挑战研讨会:通过非平衡等离子体化学实现基于电的未来
  • 批准号:
    1613074
  • 财政年份:
    2016
  • 资助金额:
    $ 26.7万
  • 项目类别:
    Standard Grant
Collaborative Research: GOALI - Non-Equilibrium Processes, Stability, Design and Control of Pulsed Plasmas for Materials Processing
合作研究:GOALI - 用于材料加工的脉冲等离子体的非平衡过程、稳定性、设计和控制
  • 批准号:
    1500126
  • 财政年份:
    2015
  • 资助金额:
    $ 26.7万
  • 项目类别:
    Standard Grant
Collaborative Research: CDI-Type II: Cyber-Enabled Studies of Complexity in Nanodusty Plasmas
合作研究:CDI-II 型:纳米尘等离子体复杂性的网络研究
  • 批准号:
    1124724
  • 财政年份:
    2011
  • 资助金额:
    $ 26.7万
  • 项目类别:
    Standard Grant
International Experiences in Low Temperature Plasmas: Student Travel Support to Attend the 2010 Gaseous Electronics Conference, October 4-8, 2010 in Paris, France
低温等离子体的国际经验:为学生参加 2010 年 10 月 4-8 日在法国巴黎举行的 2010 年气体电子会议提供旅行支持
  • 批准号:
    1038603
  • 财政年份:
    2010
  • 资助金额:
    $ 26.7万
  • 项目类别:
    Standard Grant
Atmospheric Pressure Plasma Processing of Polymers: Plasma Dynamics and Nanoscale Plasma-Surface Interactions
聚合物的大气压等离子体加工:等离子体动力学和纳米级等离子体-表面相互作用
  • 批准号:
    0520368
  • 财政年份:
    2005
  • 资助金额:
    $ 26.7万
  • 项目类别:
    Continuing Grant
Atmospheric Pressure Plasma Processing of Polymers: Plasma Dynamics and Nanoscale Plasma-Surface Interactions
聚合物的大气压等离子体加工:等离子体动力学和纳米级等离子体-表面相互作用
  • 批准号:
    0315353
  • 财政年份:
    2003
  • 资助金额:
    $ 26.7万
  • 项目类别:
    Continuing Grant
Gordon Research Conference on Plasma Processing Science: Support for Graduate and Post-Doctoral Students
戈登等离子体处理科学研究会议:对研究生和博士后学生的支持
  • 批准号:
    0215382
  • 财政年份:
    2002
  • 资助金额:
    $ 26.7万
  • 项目类别:
    Standard Grant

相似国自然基金

面向图像目标检测的新型弱监督学习方法研究
  • 批准号:
    62371157
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于扩散模型的细粒度目标跟踪方法研究
  • 批准号:
    62302142
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多维度不确定性驱动的弱目标分割方法研究
  • 批准号:
    62376189
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
数据驱动的复杂昂贵高维多目标优化方法研究
  • 批准号:
    62303344
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
“双碳”目标下北方粮食主产区水-土地-粮食-碳耦合机理与优化调控研究
  • 批准号:
    42301327
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

GOALI/Collaborative Research: Instabilities and Local Strains in Engineered Cartilage Scaffold
GOALI/合作研究:工程软骨支架的不稳定性和局部应变
  • 批准号:
    2129825
  • 财政年份:
    2022
  • 资助金额:
    $ 26.7万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Understanding Multiscale Mechanics of Cyclic Bending under Tension to Improve Elongation-to-Fracture of Hexagonal Metals
GOALI/合作研究:了解张力下循环弯曲的多尺度力学,以提高六方金属的断裂伸长率
  • 批准号:
    2147126
  • 财政年份:
    2022
  • 资助金额:
    $ 26.7万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Instabilities and Local Strains in Engineered Cartilage Scaffold
GOALI/合作研究:工程软骨支架的不稳定性和局部应变
  • 批准号:
    2129776
  • 财政年份:
    2022
  • 资助金额:
    $ 26.7万
  • 项目类别:
    Standard Grant
DMREF: Collaborative Research: GOALI: Accelerating Discovery of High Entropy Silicates for Extreme Environments
DMREF:合作研究:GOALI:加速极端环境中高熵硅酸盐的发现
  • 批准号:
    2219788
  • 财政年份:
    2022
  • 资助金额:
    $ 26.7万
  • 项目类别:
    Standard Grant
Collaborative Research: GOALI: Bio-inspired bistable energy harvesting for fish telemetry tags
合作研究:GOALI:用于鱼类遥测标签的仿生双稳态能量收集
  • 批准号:
    2245117
  • 财政年份:
    2022
  • 资助金额:
    $ 26.7万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了