BIGDATA: Collaborative Research: F: Holistic Optimization of Data-Driven Applications
BIGDATA:协作研究:F:数据驱动应用程序的整体优化
基本信息
- 批准号:2027516
- 负责人:
- 金额:$ 20.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2021-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We interact with online shopping and banking websites on a daily basis. Many of these websites are powered by data-driven applications. Such application often consists of two parts: an application hosted on an application server, and a database management system (DBMS) hosted on a separate server from the application server that maintains persistent data. Unfortunately, many data-driven applications suffer from performance problems, such as taking a long time to load a page or inability to scale up to serve large number of clients simultaneously. The state of the art in discovering and fixing performance problems in data-driven applications is to examine the two parts of the application separately, and doing so misses many opportunities in discovering and fixing such problems. Unlike prior approaches, in this project we will treat the DBMS and the application in tandem. In particular, we will devise new techniques and tools to help identify performance problems, understand the cause of such problems, and fix them automatically. This project will open up new opportunities in cross-layer program compilation and optimization, with the practical goal of improving the performance of data-driven applications that will have a significant impact in many aspects of our daily lives. The findings from this project will be incorporated into undergraduate and graduate software engineering, introduction to data management, and compiler classes to be offered at the University of Chicago and the University of Washington. The outreach activities of this project will include engaging and advising students through special programs geared toward under-represented groups such as the Distributed Research Experiences for Undergraduates (DREU) organized by CRA-W (Computing Research Association -- Women) and Diversity Workshops organized by CRA-W. Specifically, the proposed research consists of three thrusts: (1) a new cross-layer program analysis framework that produces an end-to-end profile of data-driven applications by understanding the application code, the queries that the application sends to the DBMS, and how the DBMS processes such queries; (2) a program analysis and testing framework that identify performance problems in data-driven applications by leveraging the end-to-end profile created from (1); and (3) new means to optimize data-driven applications by transforming both the application code and the queries that are issued. These three thrusts will work together to improve the performance of data-driven applications and help programmers detect performance problems during development. Software developed by this project, benchmarks used for evaluation, and performance comparison with existing techniques will be released to public domain through the project website. Further information will be available at the project website (https://people.eecs.berkeley.edu/~akcheung/coopt.html).
我们每天与在线购物和银行网站进行互动。这些网站中有许多由数据驱动的应用程序提供动力。该应用程序通常由两个部分组成:托管在应用程序服务器上的应用程序,以及与维护持久数据的应用程序服务器上托管的数据库管理系统(DBMS)。不幸的是,许多数据驱动的应用程序都遇到了性能问题,例如花很长时间来加载页面或无法扩展以同时为大量客户提供服务。在数据驱动的应用程序中发现和解决性能问题的最新状态是分别检查应用程序的两个部分,并因此而错过了发现和解决此类问题的许多机会。与先前的方法不同,在此项目中,我们将同时处理DBMS和应用程序。特别是,我们将设计新技术和工具,以帮助识别绩效问题,了解此类问题的原因并自动解决这些问题。该项目将在跨层计划汇编和优化方面开放新的机会,其实用目标是提高数据驱动应用程序的性能,这些应用程序将对我们日常生活的许多方面产生重大影响。该项目的发现将纳入本科和研究生软件工程,数据管理简介以及芝加哥大学和华盛顿大学将提供的编译器课程。该项目的外展活动将包括通过针对代表性不足的团体(例如由CRA-W(计算研究协会) - 妇女)和CRA-W组织的多样性讲习班的特殊计划(DREU)参与和建议学生。 具体而言,拟议的研究由三个推力组成:(1)一个新的跨层程序分析框架,该框架通过了解应用程序代码,应用程序发送给DBMS的查询以及DBMS如何处理此类疑问来产生数据驱动的应用程序的端到端概况; (2)通过利用(1)创建的端到端配置文件来识别数据驱动应用程序中的性能问题的程序分析和测试框架; (3)通过转换发行的应用程序代码和查询来优化数据驱动的应用程序的新方法。这三个推力将共同提高数据驱动的应用程序的性能,并帮助程序员在开发过程中发现性能问题。该项目开发的软件,用于评估的基准以及与现有技术的性能比较将通过项目网站发布到公共领域。更多信息将在项目网站(https://people.eecs.berkeley.edu/~akcheung/coopt.html)上获得。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Generating Application-specific Data Layouts for In-memory Databases
- DOI:10.14778/3342263.3342630
- 发表时间:2019-07
- 期刊:
- 影响因子:0
- 作者:Cong Yan;Alvin Cheung
- 通讯作者:Cong Yan;Alvin Cheung
Managing data constraints in database-backed web applications
管理数据库支持的 Web 应用程序中的数据约束
- DOI:10.1145/3377811.3380375
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Junwen Yang, Utsav Sethi
- 通讯作者:Junwen Yang, Utsav Sethi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alvin Cheung其他文献
Visualization by example
可视化示例
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Chenglong Wang;Yu Feng;Rastislav Bodík;Alvin Cheung;Işıl Dillig - 通讯作者:
Işıl Dillig
Code Transpilation for Hardware Accelerators
硬件加速器的代码转换
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Yuto Nishida;Sahil Bhatia;Shadaj Laddad;Hasan Genç;Y. Shao;Alvin Cheung - 通讯作者:
Alvin Cheung
Verified lifting of stencil computations
验证了模板计算的提升
- DOI:
10.1145/2908080.2908117 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Shoaib Kamil;Alvin Cheung;Shachar Itzhaky;Armando Solar - 通讯作者:
Armando Solar
Speeding up symbolic reasoning for relational queries
加速关系查询的符号推理
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Chenglong Wang;Alvin Cheung;Rastislav Bodík - 通讯作者:
Rastislav Bodík
Packet Transactions: A Programming Model for Data-Plane Algorithms at Hardware Speed
数据包事务:硬件速度下数据平面算法的编程模型
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Anirudh Sivaraman;M. Budiu;Alvin Cheung;Changhoon Kim;Steve Licking;G. Varghese;H. Balakrishnan;Mohammad Alizadeh;N. McKeown - 通讯作者:
N. McKeown
Alvin Cheung的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alvin Cheung', 18)}}的其他基金
III: Medium: Collaborative Research: Reasoning about Optimizers for Data-Intensive Systems
III:媒介:协作研究:数据密集型系统优化器的推理
- 批准号:
1955488 - 财政年份:2020
- 资助金额:
$ 20.04万 - 项目类别:
Standard Grant
CAREER: Generating Application-Specific Database Management Systems
职业:生成特定于应用程序的数据库管理系统
- 批准号:
2027575 - 财政年份:2020
- 资助金额:
$ 20.04万 - 项目类别:
Continuing Grant
CAREER: Generating Application-Specific Database Management Systems
职业:生成特定于应用程序的数据库管理系统
- 批准号:
1651489 - 财政年份:2017
- 资助金额:
$ 20.04万 - 项目类别:
Continuing Grant
NeTS: Medium: Collaborative Research: Language and Hardware Primitives for Programming the Data Plane in High Speed Networks
NeTS:媒介:协作研究:高速网络中数据平面编程的语言和硬件原语
- 批准号:
1563788 - 财政年份:2016
- 资助金额:
$ 20.04万 - 项目类别:
Continuing Grant
BIGDATA: Collaborative Research: F: Holistic Optimization of Data-Driven Applications
BIGDATA:协作研究:F:数据驱动应用程序的整体优化
- 批准号:
1546083 - 财政年份:2015
- 资助金额:
$ 20.04万 - 项目类别:
Standard Grant
相似国自然基金
数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
- 批准号:72372084
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
在线医疗团队协作模式与绩效提升策略研究
- 批准号:72371111
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
面向人机接触式协同作业的协作机器人交互控制方法研究
- 批准号:62373044
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于数字孪生的颅颌面人机协作智能手术机器人关键技术研究
- 批准号:82372548
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
A-型结晶抗性淀粉调控肠道细菌协作产丁酸机制研究
- 批准号:32302064
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
- 批准号:
2348159 - 财政年份:2023
- 资助金额:
$ 20.04万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
- 批准号:
2308649 - 财政年份:2022
- 资助金额:
$ 20.04万 - 项目类别:
Standard Grant
BigData:IA:Collaborative Research: TIMES: A tensor factorization platform for spatio-temporal data
BigData:IA:协作研究:TIMES:时空数据张量分解平台
- 批准号:
2034479 - 财政年份:2020
- 资助金额:
$ 20.04万 - 项目类别:
Standard Grant
BIGDATA: F: Collaborative Research: Practical Analysis of Large-Scale Data with Lyme Disease Case Study
BIGDATA:F:协作研究:莱姆病案例研究大规模数据的实际分析
- 批准号:
1934319 - 财政年份:2019
- 资助金额:
$ 20.04万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Protecting Yourself from Wildfire Smoke: Big Data-Driven Adaptive Air Quality Prediction Methodologies
大数据:IA:协作研究:保护自己免受野火烟雾的侵害:大数据驱动的自适应空气质量预测方法
- 批准号:
1838022 - 财政年份:2019
- 资助金额:
$ 20.04万 - 项目类别:
Standard Grant