CIF: Small: Foundations of Serverless Computing: Optimizing Latency and Utility
CIF:小型:无服务器计算的基础:优化延迟和实用性
基本信息
- 批准号:2007669
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Serverless computing platforms represent the fastest growing segment of cloud services, and are predicted to dominate cloud computing in the near future. These platforms run user-specified functions and automatically manage the underlying compute resources for the users. Serverless computing has the potential to impact fields as diverse as scientific computing, large-scale optimization, deep neural networks (DNNs), and video encoding in real-time due to its ease of management, inexpensiveness, massive scalability and flexibility in terms of compute power. In order to harness the full potential, however, several fundamental challenges must be addressed concerning several unique attributes of serverless computing, namely ephemeral machines, low memory footprint, heavy communication costs, and substantially different pricing policies. This project approaches these unique challenges by combining cutting-edge techniques from distributed computing with innovative concepts from coding theory, information theory, optimization, and game theory. The broader societal impact of this project is best appreciated by considering that nearly everyone, knowingly or unknowingly, benefits from the efficacy and ubiquity of cloud computing which has come to underly everything in modern digital life from web searches to online transactions. As serverless platforms are expected to dominate cloud computing in the near future, this project is expected to provide significant benefits by increasing efficiencies and reducing the user costs of cloud services. This proposal takes a principled and foundational approach to minimizing latency and costs in serverless computing. This will lead to the development of theory and algorithms driven by theoretical principles which are informed by coding and information theory, resource allocation and optimization, randomized linear algebra, as well as mechanism design and game theory. The project consists of two major components: (a) Robust, efficient, and massively scalable distributed computing algorithms for latency minimization in serverless systems by integrating the power of coded computation into an optimization framework; and (b) Optimal pricing schemes for cost minimization, which leverage incentive mechanisms for pricing that maximize the total utility across customers, and enable cloud service providers to achieve favorable trade-offs between quality-of-service and revenue.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
无服务器计算平台代表了云服务中增长最快的部分,预计在不久的将来将主导云计算。这些平台运行用户指定的功能并自动为用户管理底层计算资源。无服务器计算由于其易于管理、成本低廉、计算方面具有巨大的可扩展性和灵活性,有可能影响科学计算、大规模优化、深度神经网络 (DNN) 和实时视频编码等多个领域力量。然而,为了充分发挥潜力,必须解决与无服务器计算的几个独特属性有关的几个基本挑战,即短暂的机器、低内存占用、高昂的通信成本以及截然不同的定价政策。该项目通过将分布式计算的尖端技术与编码理论、信息论、优化和博弈论的创新概念相结合来应对这些独特的挑战。 考虑到几乎每个人都有意或无意地受益于云计算的功效和普遍性,云计算已经成为现代数字生活中从网络搜索到在线交易的一切的基础,因此可以最好地理解该项目更广泛的社会影响。由于无服务器平台预计将在不久的将来主导云计算,因此该项目预计将通过提高效率和降低云服务的用户成本来提供显着的好处。该提案采用原则性和基础性的方法来最大限度地减少无服务器计算中的延迟和成本。这将导致由编码和信息论、资源分配和优化、随机线性代数以及机制设计和博弈论等理论原理驱动的理论和算法的发展。该项目由两个主要部分组成:(a) 稳健、高效且可大规模扩展的分布式计算算法,通过将编码计算的功能集成到优化框架中,实现无服务器系统中的延迟最小化; (b) 成本最小化的最佳定价方案,该方案利用定价激励机制,最大限度地提高客户的总效用,并使云服务提供商能够在服务质量和收入之间实现有利的权衡。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
BEAR: Sketching BFGS Algorithm for Ultra-High Dimensional Feature Selection in Sublinear Memory
BEAR:草图次线性存储器中超高维特征选择的 BFGS 算法
- DOI:
- 发表时间:2021-01
- 期刊:
- 影响因子:0
- 作者:Amirali, Aghazadeh;Gupta, Vipul;DeWeese, Ale;Koyluoglu, O.Ozan;Ramchandran, Kannan
- 通讯作者:Ramchandran, Kannan
Interactive Learning with Pricing for Optimal and Stable Allocations in Markets
交互式学习和定价,以实现市场的最佳和稳定配置
- DOI:
- 发表时间:2023-04
- 期刊:
- 影响因子:0
- 作者:Erginbas, Yigit Efe;Phade, Soham;Ramchandran, Kannan
- 通讯作者:Ramchandran, Kannan
OverSketched Newton: Fast Convex Optimization for Serverless Systems
OverSketched Newton:无服务器系统的快速凸优化
- DOI:10.1109/bigdata50022.2020.9378289
- 发表时间:2020-12
- 期刊:
- 影响因子:0
- 作者:Gupta, Vipul;Kadhe, Swanand;Courtade, Thomas;Mahoney, Michael W.;Ramchandran, Kannan
- 通讯作者:Ramchandran, Kannan
Serverless Straggler Mitigation using Error-Correcting Codes
使用纠错代码缓解无服务器落后者
- DOI:10.1109/icdcs47774.2020.00019
- 发表时间:2020-11
- 期刊:
- 影响因子:0
- 作者:Gupta, Vipul;Carrano, Dominic;Yang, Yaoqing;Shankar, Vaishaal;Courtade, Thomas;Ramchandran, Kannan
- 通讯作者:Ramchandran, Kannan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kannan Ramchandran其他文献
Kannan Ramchandran的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kannan Ramchandran', 18)}}的其他基金
EAGER: SaTC: Quantifying the Fair Value of Data and Privacy in Distributed Learning
EAGER:SaTC:量化分布式学习中数据和隐私的公允价值
- 批准号:
2232146 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: MLWiNS: A Coding-Centric Approach to Robust, Secure, and Private Distributed Learning over Wireless
协作研究:MLWiNS:一种以编码为中心的方法,通过无线实现稳健、安全和私密的分布式学习
- 批准号:
2002821 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
EAGER: SaTC: CORE: Small: Blockchain Architectures for Resource-Constrained Devices
EAGER:SaTC:核心:小型:资源受限设备的区块链架构
- 批准号:
1937357 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CIF:Medium:Collaborative Research: Foundations of Coding for Modern Distributed Computing
CIF:中:协作研究:现代分布式计算编码基础
- 批准号:
1703678 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CIF:Small:Next-Generation Compressive Phase-Retrieval Using Sparse-Graph Codes: Theory, Design and Applications
CIF:Small:使用稀疏图代码的下一代压缩相位检索:理论、设计和应用
- 批准号:
1527767 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
EAGER: Ultra-FFAST Alias Codes for Sparse Spectrum Estimation: Next Generation Compressed Sensing
EAGER:用于稀疏频谱估计的 Ultra-FFAST 别名代码:下一代压缩感知
- 批准号:
1439725 - 财政年份:2014
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CIF: Medium: Collaborative Research: Content Delivery over Heterogeneous Networks: Fundamental Limits and Distributed Algorithms
CIF:媒介:协作研究:异构网络上的内容交付:基本限制和分布式算法
- 批准号:
1409135 - 财政年份:2014
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Workshop Proposal: Communication Theory and Signal Processing in the Cloud Era
研讨会提案:云时代的通信理论和信号处理
- 批准号:
1228976 - 财政年份:2012
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Small: CIF: Foundations of Next-Generation Reliable, Energy-Efficient and Secure Distributed Storage Systems
小:CIF:下一代可靠、节能和安全的分布式存储系统的基础
- 批准号:
1116404 - 财政年份:2011
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CIF: Medium: Collaborative Research: Interactive Security
CIF:媒介:协作研究:交互式安全
- 批准号:
0964018 - 财政年份:2010
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
相似国自然基金
SERT-nNOS蛋白相互作用的结构基础及其小分子互作抑制剂的设计、合成及快速抗抑郁活性研究
- 批准号:82373728
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
萱草花通过调节小胶质细胞焦亡与Tau病理的crosstalk抗阿尔茨海默病的药效物质基础及作用机制研究
- 批准号:82304710
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
以E6AP小分子抑制剂为基础的HPV阳性宫颈癌靶向药物开发新策略
- 批准号:82304563
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
负载超小Pt纳米酶的巨噬细胞仿生纳米药物复合体系的构建及其对急性肾损伤治疗的应用基础研究
- 批准号:82272147
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
逍遥散通过Nrf2调控小胶质细胞活化而保护海马神经发生的抗抑郁机制及药效物质基础研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343600 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343599 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CIF: SMALL: Theoretical Foundations of Partially Observable Reinforcement Learning: Minimax Sample Complexity and Provably Efficient Algorithms
CIF:SMALL:部分可观察强化学习的理论基础:最小最大样本复杂性和可证明有效的算法
- 批准号:
2315725 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: CIF: Small: Neural Estimation of Statistical Divergences: Theoretical Foundations and Applications to Communication Systems
NSF-BSF:协作研究:CIF:小型:统计差异的神经估计:通信系统的理论基础和应用
- 批准号:
2308446 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CIF: Small: Impact of radiation trapping on sensing and communication systems in the THz, infrared, and optical regime - foundations, challenges, and opportunities
CIF:小:辐射捕获对太赫兹、红外和光学领域传感和通信系统的影响 - 基础、挑战和机遇
- 批准号:
2320937 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant