SHF: Small: Next-Generation Fully Integrated Power Management Circuits: Enabling Faster and More Efficient Computing and Communication in Smaller and Lower-Cost Mobile Electronics

SHF:小型:下一代全集成电源管理电路:在更小、更低成本的移动电子产品中实现更快、更高效的计算和通信

基本信息

  • 批准号:
    2007154
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

The semiconductor industry has increasing demands for faster and more efficient computing and communication with next-generation System-on-Chips (SoCs) and 5G new radios in thinner, smaller and lower-cost devices. The existing Power Management Integrated Circuits (PMICs), which are essential to supply power to different system components, cannot keep up with the needs of future applications, and become the most significant bottleneck in system development in respect of speed, form-factor and cost. This project aims to develop new designs of high-frequency voltage regulators fully integrated with all the components, including power inductors and capacitors, embedded in the integrated circuit package. The dynamic speed will be enhanced to enable optimal power-saving strategies for SoCs, which are essential to relax power and thermal constraints for higher performance. The enhanced speed will enable high-bandwidth envelop-tracking techniques, which will greatly reduce the power overhead in supplying radio-frequency power amplifiers in high-speed communication systems and improve the overall efficiency. The form factor and cost will be dramatically reduced. Besides, since power supply is fundamental in any electronic device, this project will potentially benefit a wide range of scientific, industrial, and medical applications. In addition, the research, education and outreach activities will also contribute to training the future science and engineering workforce and broadening participation in STEM areas.To accomplish the research goal, this project will develop fully integrated voltage regulators with multiple innovations, e.g., 1) new power inductors: develop near-free and high-quality power inductors with in-package parasitics to enable the freedom to expand the number of phases for faster speed, higher power capacity and better efficiency without increasing the form-factor and cost; 2) new topologies and design strategies: a) develop maximum efficiency-tracking strategies to determine the optimal number of phases at the design stage, as well as in operation; b) develop multi-level topologies for one-stage voltage conversion directly from the battery to the load; 3) new controller and circuits: a) push the small-signal bandwidth to the theoretical limit by developing a self-learning compensator; b) maximize the large-signal speed by developing a smart hybrid array and a burst-mode operation; c) design control and circuit techniques to switch the multi-phase and multi-level power stages with optimal efficiency; d) develop dynamic voltage stress management for stacking and multi-level topologies to support a wide voltage range with ensured reliability under high-frequency and high-current operations. The designs will be realized in silicon and measured with detailed performance characterizations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
半导体行业对更薄、更小、成本更低的设备中的下一代片上系统 (SoC) 和 5G 新无线电的更快、更高效的计算和通信的需求日益增长。现有的电源管理集成电路(PMIC)是为不同系统组件供电所必需的,但无法跟上未来应用的需求,成为系统开发在速度、外形尺寸和成本方面的最大瓶颈。该项目旨在开发高频稳压器的新设计,与嵌入集成电路封装中的所有组件(包括功率电感器和电容器)完全集成。动态速度将得到增强,以实现 SoC 的最佳节能策略,这对于放松功耗和热限制以获得更高的性能至关重要。速度的提高将使高带宽包络跟踪技术成为可能,这将大大降低高速通信系统中射频功率放大器的功率开销,并提高整体效率。外形尺寸和成本将显着降低。此外,由于电源是任何电子设备的基础,因此该项目将有可能使广泛的科学、工业和医疗应用受益。此外,研究、教育和推广活动还将有助于培训未来的科学和工程人员并扩大对 STEM 领域的参与。为了实现研究目标,该项目将开发具有多项创新的全集成电压调节器,例如 1)新型功率电感器:开发具有封装内寄生效应的近乎自由的高质量功率电感器,以便能够自由扩展相数,从而在不增加外形尺寸和成本的情况下实现更快的速度、更高的功率容量和更高的效率; 2) 新的拓扑和设计策略: a) 制定最大效率跟踪策略,以确定设计阶段以及运行中的最佳相数; b) 开发多级拓扑结构,用于直接从电池到负载的一级电压转换; 3)新的控制器和电路:a)通过开发自学习补偿器将小信号带宽推向理论极限; b) 通过开发智能混合阵列和突发模式操作来最大化大信号速度; c) 设计控制和电路技术,以最佳效率切换多相和多级功率级; d) 开发用于堆叠和多电平拓扑的动态电压应力管理,以支持宽电压范围,并在高频和大电流操作下确保可靠性。这些设计将在硅中实现,并通过详细的性能特征进行测量。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Fully In-Package 4-Phase Fixed-Frequency DAB Hysteretic Controlled DC-DC Converter with Enhanced Efficiency, Load Regulation and Transient Response
具有增强效率、负载调节和瞬态响应的全封装 4 相固定频率 DAB 迟滞控制 DC-DC 转换器
Analytical Comparison of 3-Level 2-Phase and Double-Step-Down Topologies for Integrated High-Ratio DC-DC Converters in BCD and GaN Process
BCD 和 GaN 工艺中集成高比率 DC-DC 转换器的 3 级 2 相和双降压拓扑的分析比较
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Cheng Huang其他文献

A Machine Learning Based Framework for Identifying Influential Nodes in Complex Networks
基于机器学习的框架,用于识别复杂网络中有影响力的节点
  • DOI:
    10.1109/access.2020.2984286
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Gouheng Zhao;Peng Jia;Cheng Huang;Anmin Zhou;Yong Fang
  • 通讯作者:
    Yong Fang
Liquid-Liquid interfacial approach for rapid synthesis of Well-Crystalline Two-Dimensional Metal-Organic frameworks for nitro reduction
用于快速合成用于硝基还原的良好结晶二维金属有机框架的液-液界面方法
  • DOI:
    10.1016/j.cej.2024.149969
  • 发表时间:
    2024-02-01
  • 期刊:
  • 影响因子:
    15.1
  • 作者:
    Jian Yang;Lulu Kong;Cheng Huang;Chongchong Wang;Shaohua Wei;Lin Zhou
  • 通讯作者:
    Lin Zhou
Association of circulating miR-155 expression level and inflammatory markers with white coat hypertension
循环miR-​​155表达水平和炎症标志物与白大衣高血压的关联
  • DOI:
    10.1038/s41371-019-0250-7
  • 发表时间:
    2019-09-03
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Yu;Cheng Huang;Bin Zhang;Ying
  • 通讯作者:
    Ying
Bavachinin, as a novel natural pan-PPAR agonist, exhibits unique synergistic effects with synthetic PPAR-γ and PPAR-α agonists on carbohydrate and lipid metabolism in db/db and diet-induced obese mice
Bavachinin 作为一种新型天然泛 PPAR 激动剂,与合成 PPAR-γ 和 PPAR-α 激动剂对 db/db 和饮食诱导肥胖小鼠的碳水化合物和脂质代谢表现出独特的协同作用
  • DOI:
    10.1007/s00125-016-3912-9
  • 发表时间:
    2016-03-16
  • 期刊:
  • 影响因子:
    8.2
  • 作者:
    Li Feng;Huan Luo;Zhijian Xu;Zhuo Yang;Guoxin Du;Yu Zhang;Lijing Yu;K. Hu;Weiliang Zhu;Qingchun Tong;Kaixian Chen;Fujiang Guo;Cheng Huang;Yiming Li
  • 通讯作者:
    Yiming Li
Histone deacetylase‐mediated silencing of PSTPIP2 expression contributes to aristolochic acid nephropathy‐induced PANoptosis
组蛋白脱乙酰酶介导的 PSTPIP2 表达沉默导致马兜铃酸肾病诱导的 PANoptosis
  • DOI:
    10.1111/bph.16299
  • 发表时间:
    2023-12-10
  • 期刊:
  • 影响因子:
    7.3
  • 作者:
    Chuanting Xu;Qi Wang;C. Du;Jiahui Dong;Zhenming Zhang;Na Cai;Jun Li;Cheng Huang;Taotao Ma
  • 通讯作者:
    Taotao Ma

Cheng Huang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Cheng Huang', 18)}}的其他基金

CAREER: Towards 3D Omnidirectional and Efficient Wireless Power Transfer with Controlled 2D Near-Field Coil Array
职业:利用受控 2D 近场线圈阵列实现 3D 全向高效无线功率传输
  • 批准号:
    2338697
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant

相似国自然基金

ALKBH5介导的SOCS3-m6A去甲基化修饰在颅脑损伤后小胶质细胞炎性激活中的调控作用及机制研究
  • 批准号:
    82301557
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
miRNA前体小肽miPEP在葡萄低温胁迫抗性中的功能研究
  • 批准号:
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
PKM2苏木化修饰调节非小细胞肺癌起始细胞介导的耐药生态位的机制研究
  • 批准号:
    82372852
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于翻译组学理论探究LncRNA H19编码多肽PELRM促进小胶质细胞活化介导电针巨刺改善膝关节术后疼痛的机制研究
  • 批准号:
    82305399
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
CLDN6高表达肿瘤细胞亚群在非小细胞肺癌ICB治疗抗性形成中的作用及机制研究
  • 批准号:
    82373364
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SHF: Small: Scalable and Extensible I/O Runtime and Tools for Next Generation Adaptive Data Layouts
协作研究:SHF:小型:可扩展和可扩展的 I/O 运行时以及下一代自适应数据布局的工具
  • 批准号:
    2401274
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Scalable and Extensible I/O Runtime and Tools for Next Generation Adaptive Data Layouts
协作研究:SHF:小型:可扩展和可扩展的 I/O 运行时以及下一代自适应数据布局的工具
  • 批准号:
    2221811
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Scalable and Extensible I/O Runtime and Tools for Next Generation Adaptive Data Layouts
协作研究:SHF:小型:可扩展和可扩展的 I/O 运行时以及下一代自适应数据布局的工具
  • 批准号:
    2221812
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SHF: Small: Addressing Challenges for the Next Decade of Massively Parallel NUMA Accelerators
SHF:小型:应对大规模并行 NUMA 加速器未来十年的挑战
  • 批准号:
    1910924
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
AF: SHF: Small: Algorithmic and Architectural Foundation for Next-Generation Collective DNA Robots
AF:SHF:小型:下一代集体 DNA 机器人的算法和架构基础
  • 批准号:
    1813550
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了