FET: Small: Design Optimization of Silicon Photonic Integrated Circuits under Fabrication Process Variations
FET:小型:制造工艺变化下硅光子集成电路的设计优化
基本信息
- 批准号:2006788
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-15 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Silicon photonics technology has made it possible to realize fully integrated photonic circuits with sub-micron silicon photonic devices. As a result, small and mobile photonic circuits can be developed that can perform a variety of optical functions for different applications, but with much lower cost and energy consumption. However, there is a fundamental issue that has limited the emergence of silicon photonic integrated circuits: the underlying silicon photonic devices in these circuits are extremely sensitive to fabrication-process variations. Indeed, nanometer-scale variations in the critical dimensions of silicon photonic devices considerably degrade the performance of the resulting circuits and even cause circuit failures. Unfortunately, the inability to efficiently characterize and compensate for fabrication-process variations have so far limited the development of cost-effective silicon photonic integrated circuits capable of delivering the true potential of silicon photonics. To combat this, the project involves research to realize energy-efficient and complex silicon photonic integrated circuits for different real-world applications that will be fully functional even in the presence of variation-plagued components. In addition, this project will create training opportunities for industrial participants and students at different levels to work on real-world problems while emphasizing the inclusion of underrepresented groups, thereby improving the education infrastructure and training highly skilled practitioners.The project contributions will involve developing: 1) comprehensive models of systematic and stochastic process variations in silicon photonics while incorporating both the probabilistic and non-probabilistic nature of uncertainties; 2) a framework to optimize silicon photonic sub-circuits and circuits under fabrication-process variations during design-time; and, and 3) energy-efficient circuit-level solutions to efficiently compensate for the impact of fabrication-process variations during run-time. For characterizing different variations, novel silicon photonic test structures and analytical algorithms will be designed to model different sources of fabrication-process variations and their impact. Efficient and compact stochastic analytical models will be developed to extensively explore and optimize silicon photonic sub-circuit and circuit performance under variations. For design-time optimization, the silicon-photonic integrated-circuit design problem will be modeled as a formal optimization problem to realize energy-efficient and robust circuits under fabrication-process variations. The performance under fabrication-process variations will be further improved by developing run-time self-correction mechanisms based on adaptive photonic signal multiplexing, robust signal routing and contention-management schemes, and dynamic adaptations for inexact circuit behavior under variations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
硅光子技术使得用亚微米硅光子器件实现全集成光子电路成为可能。因此,可以开发出小型移动光子电路,可以为不同的应用执行各种光学功能,但成本和能耗要低得多。然而,有一个基本问题限制了硅光子集成电路的出现:这些电路中的底层硅光子器件对制造工艺的变化极其敏感。事实上,硅光子器件关键尺寸的纳米级变化会大大降低最终电路的性能,甚至导致电路故障。不幸的是,迄今为止,无法有效地表征和补偿制造工艺的变化,限制了能够发挥硅光子学真正潜力的经济高效的硅光子集成电路的开发。为了解决这个问题,该项目涉及研究实现高能效和复杂的硅光子集成电路,用于不同的实际应用,即使存在变化严重的组件,这些集成电路也能完全发挥作用。此外,该项目将为不同层次的行业参与者和学生创造解决现实问题的培训机会,同时强调包容代表性不足的群体,从而改善教育基础设施并培训高技能从业人员。该项目的贡献将包括开发: 1)硅光子学中系统和随机过程变化的综合模型,同时结合了不确定性的概率和非概率性质; 2)在设计时优化硅光子子电路和制造工艺变化下的电路的框架; 3) 节能电路级解决方案,可有效补偿运行时制造工艺变化的影响。为了表征不同的变化,将设计新颖的硅光子测试结构和分析算法来模拟制造工艺变化的不同来源及其影响。将开发高效、紧凑的随机分析模型,以广泛探索和优化硅光子子电路和变化下的电路性能。对于设计时优化,硅光子集成电路设计问题将被建模为形式优化问题,以在制造工艺变化下实现节能且鲁棒的电路。通过开发基于自适应光子信号复用、稳健的信号路由和竞争管理方案以及对变化下不精确电路行为的动态适应的运行时自我校正机制,将进一步提高制造工艺变化下的性能。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
ROBIN: A Robust Optical Binary Neural Network Accelerator
ROBIN:鲁棒的光学二元神经网络加速器
- DOI:10.1145/3476988
- 发表时间:2021-10
- 期刊:
- 影响因子:2
- 作者:Sunny, Febin P.;Mirza, Asif;Nikdast, Mahdi;Pasricha, Sudeep
- 通讯作者:Pasricha, Sudeep
Variation-Aware Inter-Device Matching in Silicon Photonic Microring Resonator Demultiplexers
硅光子微环谐振器解复用器中的变化感知器件间匹配
- DOI:10.1109/ipc47351.2020.9252537
- 发表时间:2020-09
- 期刊:
- 影响因子:0
- 作者:Mirza, Asif;Pasricha, Sudeep;Nikdast, Mahdi
- 通讯作者:Nikdast, Mahdi
A Survey on Optical Phase-Change Memory: The Promise and Challenges
光学相变存储器综述:前景与挑战
- DOI:10.1109/access.2023.3241146
- 发表时间:2023-01
- 期刊:
- 影响因子:3.9
- 作者:Shafiee, Amin;Pasricha, Sudeep;Nikdast, Mahdi
- 通讯作者:Nikdast, Mahdi
SONIC: A Sparse Neural Network Inference Accelerator with Silicon Photonics for Energy-Efficient Deep Learning
SONIC:采用硅光子技术的稀疏神经网络推理加速器,用于节能深度学习
- DOI:10.1109/asp-dac52403.2022.9712530
- 发表时间:2022-01
- 期刊:
- 影响因子:0
- 作者:Sunny, Febin;Nikdast, Mahdi;Pasricha, Sudeep
- 通讯作者:Pasricha, Sudeep
CrossLight: A Cross-Layer Optimized Silicon Photonic Neural Network Accelerator
CrossLight:跨层优化的硅光子神经网络加速器
- DOI:
- 发表时间:2021-01
- 期刊:
- 影响因子:0
- 作者:Sunny, Febin;Mirza, Asif;Nikdast, Mahdi;Pasricha, Sudeep
- 通讯作者:Pasricha, Sudeep
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mahdi Nikdast其他文献
OISA: Architecting an Optical In-Sensor Accelerator for Efficient Visual Computing
OISA:构建光学传感器内加速器以实现高效视觉计算
- DOI:
10.48550/arxiv.2311.18655 - 发表时间:
2023-11-30 - 期刊:
- 影响因子:0
- 作者:
Mehrdad Morsali;Sepehr Tabrizchi;Deniz Najafi;Mohsen Imani;Mahdi Nikdast;A. Roohi;Shaahin Angizi - 通讯作者:
Shaahin Angizi
RISA: Round-Robin Intra-Rack Friendly Scheduling Algorithm for Disaggregated Datacenters
RISA:适用于分类数据中心的循环机架内友好调度算法
- DOI:
10.1145/3624062.3624228 - 发表时间:
2023-10-06 - 期刊:
- 影响因子:0
- 作者:
Rashadul Kabir;Ryan G. Kim;Mahdi Nikdast - 通讯作者:
Mahdi Nikdast
Lightator: An Optical Near-Sensor Accelerator with Compressive Acquisition Enabling Versatile Image Processing
Lightator:具有压缩采集功能的光学近传感器加速器,可实现多功能图像处理
- DOI:
10.48550/arxiv.2403.05037 - 发表时间:
2024-03-08 - 期刊:
- 影响因子:0
- 作者:
Mehrdad Morsali;Brendan Reidy;Deniz Najafi;Sepehr Tabrizchi;Mohsen Imani;Mahdi Nikdast;A. Roohi;Ramtin Z;Shaahin Angizi - 通讯作者:
Shaahin Angizi
SCRIPT: A Multi-Objective Routing Framework for Securing Chiplet Systems against Distributed DoS Attacks
SCRIPT:用于保护 Chiplet 系统免受分布式 DoS 攻击的多目标路由框架
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Ebadollah Taheri;Pooya Aghanoury;S. Pasricha;Mahdi Nikdast;Nader Sehatbakhsh - 通讯作者:
Nader Sehatbakhsh
TRINE: A Tree-Based Silicon Photonic Interposer Network for Energy-Efficient 2.5D Machine Learning Acceleration
TRINE:基于树的硅光子中介层网络,用于节能 2.5D 机器学习加速
- DOI:
10.1145/3610396.3618091 - 发表时间:
2023-10-28 - 期刊:
- 影响因子:0
- 作者:
Ebadollah Taheri;Mohammad Amin Mahdian;S. Pasricha;Mahdi Nikdast - 通讯作者:
Mahdi Nikdast
Mahdi Nikdast的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mahdi Nikdast', 18)}}的其他基金
CAREER: Optimizing Scalability and Reconfigurability in Silicon Photonic Switch Fabrics
职业:优化硅光子交换结构的可扩展性和可重构性
- 批准号:
2046226 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
NSF Student Participation Grant for 2020 IEEE International Conference on Green and Sustainable Computing (IEEE IGSC)
NSF 学生参与 2020 年 IEEE 国际绿色与可持续计算会议 (IEEE IGSC)
- 批准号:
2040186 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
NSF Student Travel Grant for 2019 IEEE International Conference on Green and Sustainable Computing (IEEE IGSC)
2019 年 IEEE 绿色与可持续计算国际会议 (IEEE IGSC) NSF 学生旅费补助
- 批准号:
1939004 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
可激活的直接NIR-II区化学发光小分子探针的设计和构建及其活体内的双模态成像研究
- 批准号:22304001
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
合成方法学驱动的新型靶向LCK激酶小分子抑制剂的设计、合成及抗急性T淋巴细胞白血病的作用机制研究
- 批准号:22307009
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于N-乙酰半乳糖胺(GalNAc)的小分子LYTAC PD-L1降解剂的设计、合成及抗肝癌活性研究
- 批准号:82373706
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
水介导的蛋白-小分子相互作用的智能设计
- 批准号:22377111
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
COUP-TFII小分子拮抗剂的设计、合成、靶标确证及抗肝纤维化活性研究
- 批准号:82304299
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
FET: Small: Simulation-guided design of heterochiral DNA nanostructures for biomaterials applications
FET:小型:用于生物材料应用的异手性 DNA 纳米结构的模拟引导设计
- 批准号:
2312215 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
FET/SHF: Small: Reinforcement learning and transformer inspired smart photonics inverse design
FET/SHF:小型:强化学习和变压器启发的智能光子逆设计
- 批准号:
2309403 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
FET: Small: LightRidge: End-to-end Agile Design for Diffractive Optical Neural Networks
FET:小型:LightRidge:衍射光神经网络的端到端敏捷设计
- 批准号:
2321404 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
FET: Small: Optimizing quantum circuit design
FET:小型:优化量子电路设计
- 批准号:
2301120 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
FET: Small: Optimizing quantum circuit design
FET:小型:优化量子电路设计
- 批准号:
2210063 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant