RI: Small: Embracing Deep Neural Networks into Probabilistic Answer Set Programming

RI:小:将深度神经网络融入概率答案集编程

基本信息

  • 批准号:
    2006747
  • 负责人:
  • 金额:
    $ 45.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

The integration of low-level perception with high-level reasoning is one of the fundamental problems in artificial intelligence. Today, the topic is revisited with the recent rise of deep neural networks. While deep learning excels in many perception tasks, it is not obvious how multiple aspects of commonsense reasoning, such as causality, defaults, abductive reasoning, and counterfactual reasoning, can be computed by neural networks. These subjects have been well-studied in the area of knowledge representation (KR) including answer set programming (ASP) but most KR formalisms are logic-oriented and do not incorporate high-dimensional feature space and pre-trained models for vision and text as in deep learning, which limits the applicability of KR in many practical applications involving uncertainty. The goal of the proposed research is to investigate a principled combination of knowledge representation, reasoning, and learning by integrating answer set programming with neural networks, which will enable representation, inference, and learning in both symbolic and sub-symbolic levels. The project will investigate two different approaches to integration. One is a loose coupling that is based on the concept of neural atoms which serves as an interface between the neural network output and the parameters for probabilistic answer set programming. The other is a tighter coupling method that obtains fuzzy-valued atomic facts from the neural network and applies the fuzzy answer set semantics on the vectorized representation. Not only these methods allow for applying symbolic reasoning on the neural network perception result but also allow for making use of logical rules in training a neural network so that a neural network not only learns from implicit correlations from the data but also from the explicit complex semantic constraints expressed by ASP rules. The success of the project will contribute to identifying fundamental issues in bridging the gap between knowledge representation and machine learning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
低级感知与高级推理的融合是人工智能的基本问题之一。今天,随着深度神经网络最近的兴起,这个话题又被重新审视。虽然深度学习在许多感知任务中表现出色,但如何通过神经网络计算常识推理的多个方面(例如因果关系、默认值、溯因推理和反事实推理)尚不清楚。这些主题在包括答案集编程 (ASP) 在内的知识表示 (KR) 领域得到了深入研究,但大多数 KR 形式都是面向逻辑的,并且不包含高维特征空间以及视觉和文本的预训练模型。在深度学习中,这限制了 KR 在许多涉及不确定性的实际应用中的适用性。拟议研究的目标是通过将答案集编程与神经网络相结合来研究知识表示、推理和学习的原则性组合,这将实现符号和子符号级别的表示、推理和学习。该项目将研究两种不同的集成方法。一种是基于神经原子概念的松散耦合,神经原子充当神经网络输出和概率答案集编程参数之间的接口。另一种是更紧密的耦合方法,从神经网络获取模糊值原子事实,并将模糊答案集语义应用于矢量化表示。这些方法不仅允许对神经网络感知结果应用符号推理,而且允许在训练神经网络时使用逻辑规则,使得神经网络不仅从数据的隐式相关性中学习,而且从显式的复杂语义中学习ASP 规则表示的约束。该项目的成功将有助于确定弥合知识表示和机器学习之间差距的基本问题。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Simple Extension of Answer Set Programs to Embrace Neural Networks (Extended Abstract)
答案集程序的简单扩展以支持神经网络(扩展摘要)
Injecting Logical Constraints into Neural Networks via Straight-Through Estimators
通过直通估计器将逻辑约束注入神经网络
Extending Answer Set Programs with Neural Networks
使用神经网络扩展答案集程序
NeurASP: Embracing Neural Networks into Answer Set Programming
NeurASP:将神经网络纳入答案集编程
Injecting Logical Constraints into Neural Networks via Straight-Through Estimators
通过直通估计器将逻辑约束注入神经网络
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joohyung Lee其他文献

Frequency comb measurements for 6G terahertz nano/microphotonics and metamaterials
6G 太赫兹纳米/微光子学和超材料的频率梳测量
  • DOI:
    10.1515/nanoph-2023-0869
  • 发表时间:
    2024-01-31
  • 期刊:
  • 影响因子:
    7.5
  • 作者:
    Guseon Kang;Younggeun Lee;Jaeyoon Kim;Dongwook Yang;Han;Shinhyung Kim;Soojeong Baek;Hyosang Yoon;Joohyung Lee;Teun;Young‐Jin Kim
  • 通讯作者:
    Young‐Jin Kim
Facile deposition of environmentally benign organic-inorganic flame retardant coatings to protect flammable foam
轻松沉积环境友好的有机-无机阻燃涂层以保护易燃泡沫
  • DOI:
    10.1016/j.porgcoat.2021.106480
  • 发表时间:
    2021-12-01
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    T. G. Weldemhret;H. Menge;Dong;Hyun;Joohyung Lee;Jung‐il Song;Y. Park
  • 通讯作者:
    Y. Park
Performance evaluation of a DTN as a city-wide infrastructure network
DTN 作为全市基础设施网络的性能评估
  • DOI:
    10.1145/1555697.1555717
  • 发表时间:
    2009-06-17
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Joohyung Lee;Kyunghan Lee;Jaesung Jung;S. Chong
  • 通讯作者:
    S. Chong
100 nm scale low-noise sensors based on aligned carbon nanotube networks: overcoming the fundamental limitation of network-based sensors
基于对齐碳纳米管网络的100纳米级低噪声传感器:克服基于网络的传感器的根本限制
  • DOI:
    10.1088/0957-4484/21/5/055504
  • 发表时间:
    2010-02-05
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Minbaek Lee;Joohyung Lee;T. H. Kim;Hyungwoo Lee;B. Lee;June;Y. Jhon;M. Seong;Seunghun Hong
  • 通讯作者:
    Seunghun Hong
Pricing for Past Channel State Information in Multi-Channel Cognitive Radio Networks
多信道认知无线电网络中过去信道状态信息的定价
  • DOI:
    10.1109/tmc.2017.2740931
  • 发表时间:
    2018-04-01
  • 期刊:
  • 影响因子:
    7.9
  • 作者:
    Sunjung Kang;Changhee Joo;Joohyung Lee;N. Shroff
  • 通讯作者:
    N. Shroff

Joohyung Lee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joohyung Lee', 18)}}的其他基金

RI: Small: Expressive Reasoning and Learning about Actions under Uncertainty via Probabilistic Extension of Action Language
RI:小:通过动作语言的概率扩展来表达推理和学习不确定性下的动作
  • 批准号:
    1815337
  • 财政年份:
    2018
  • 资助金额:
    $ 45.85万
  • 项目类别:
    Standard Grant
Student Travel Grant for 2018 Principles of Knowledge Representation and Reasoning Conference and Doctoral Consortium
2018年知识表示与推理原理会议及博士联盟学生旅费补助
  • 批准号:
    1838259
  • 财政年份:
    2018
  • 资助金额:
    $ 45.85万
  • 项目类别:
    Standard Grant
RI: Small: Knowledge Representation and Reasoning under Uncertainty with Probabilistic Answer Set Programming
RI:小:不确定性下的知识表示和推理与概率答案集编程
  • 批准号:
    1526301
  • 财政年份:
    2015
  • 资助金额:
    $ 45.85万
  • 项目类别:
    Standard Grant
RI: Small: Answer Set Programming Modulo Theories
RI:小:答案集编程模理论
  • 批准号:
    1319794
  • 财政年份:
    2013
  • 资助金额:
    $ 45.85万
  • 项目类别:
    Standard Grant
RI: Small: Enhancing Nonmonotonic Declarative Knowledge Representation and Reasoning by Merging Answer Set Programming with Other Computing Paradigms
RI:小:通过将答案集编程与其他计算范式合并来增强非单调声明性知识表示和推理
  • 批准号:
    0916116
  • 财政年份:
    2009
  • 资助金额:
    $ 45.85万
  • 项目类别:
    Standard Grant
SGER: Grounding-Independent Reasoning in Answer Set Programming
SGER:答案集编程中与基础无关的推理
  • 批准号:
    0839821
  • 财政年份:
    2008
  • 资助金额:
    $ 45.85万
  • 项目类别:
    Standard Grant

相似国自然基金

ALKBH5介导的SOCS3-m6A去甲基化修饰在颅脑损伤后小胶质细胞炎性激活中的调控作用及机制研究
  • 批准号:
    82301557
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
miRNA前体小肽miPEP在葡萄低温胁迫抗性中的功能研究
  • 批准号:
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
PKM2苏木化修饰调节非小细胞肺癌起始细胞介导的耐药生态位的机制研究
  • 批准号:
    82372852
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于翻译组学理论探究LncRNA H19编码多肽PELRM促进小胶质细胞活化介导电针巨刺改善膝关节术后疼痛的机制研究
  • 批准号:
    82305399
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
CLDN6高表达肿瘤细胞亚群在非小细胞肺癌ICB治疗抗性形成中的作用及机制研究
  • 批准号:
    82373364
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

CNS Core: Small: Embracing cross stack heterogeneity in next-generation cloud platforms
CNS 核心:小型:在下一代云平台中拥抱跨堆栈异构性
  • 批准号:
    2116962
  • 财政年份:
    2021
  • 资助金额:
    $ 45.85万
  • 项目类别:
    Standard Grant
FET: Small: Embracing the dropouts in high-throughput genomics analysis
FET:小型:拥抱高通量基因组学分析中的丢失
  • 批准号:
    2007029
  • 财政年份:
    2020
  • 资助金额:
    $ 45.85万
  • 项目类别:
    Standard Grant
NeTS: Small: Collaborative Research: Cooperative Interference-Embracing Communication in Multi-Hop Wireless Networks
NeTS:小型:协作研究:多跳无线网络中的协作抗干扰通信
  • 批准号:
    2113618
  • 财政年份:
    2020
  • 资助金额:
    $ 45.85万
  • 项目类别:
    Standard Grant
Development of an elementary school Japanese language education curriculum embracing gender and sexual diversity
开发包含性别和性多样性的小学日语教育课程
  • 批准号:
    19K02849
  • 财政年份:
    2019
  • 资助金额:
    $ 45.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
NeTS: Small: Collaborative Research: Cooperative Interference-Embracing Communication in Multi-Hop Wireless Networks
NeTS:小型:协作研究:多跳无线网络中的协作抗干扰通信
  • 批准号:
    1949753
  • 财政年份:
    2019
  • 资助金额:
    $ 45.85万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了