RI: Small: Speech-Centered Robust and Generalizable Measurements of "In the Wild" Behavior for Mental Health Symptom Severity Tracking

RI:小:以语音为中心的稳健且可概括的“野外”行为测量,用于心理健康症状严重程度跟踪

基本信息

项目摘要

Bipolar disorder is a common and chronic illness characterized by pathological swings from euthymia (healthy) to mania (heightened energy) and depression (lowered energy). Mood transitions are associated with profound consequences to one's personal, social, vocational, and financial well-being. Current management is clinic-based and dependent on provider-patient interactions. Yet, increased demand for services has surpassed capacity, calling for radical changes in the delivery of care. This project will create new algorithms that can process speech data naturally collected from smartphone use to measure behavior and changes in behaviors and to associate these measurements with the severity of the symptoms of bipolar disorder. This will lead to the creation of new early warning signs, indications that clinical intervention is needed. Natural behavior provides a wealth of information about the health an individual. However, when assessing health, clinicians typically access cross-sectional medical data at point-of-care that is based on traditional medical methods (exams, labs, and surveys). Next generation 'precision health' depends on an inclusive and holistic approach that captures changes in health as people live their lives. This is highly relevant as 130 million Americans live with chronic disease and need efficient monitoring strategies. Speech is a promising medium for monitoring mood. Clinicians subjectively assess both form and content of speech when evaluating human disease, as speech is altered by changes in mood and health states. Yet, while speech is easy to record, speech-centered mobile monitoring solutions are not currently publicly available. The technology is neither sufficiently accurate nor robust. The central challenge is the signal itself: speech is inherently variable and complex. Existing techniques are insufficient to handle this complexity, limiting the accuracy and robustness of speech-centered mood monitoring technologies. This project will create novel and robust approaches to extracting mood symptom severity measures from speech. Mood is clinically quantified via the Hamilton Depression Rating Scale (HamD) and the Young Mania Rating Scale (YMRS). The technology focuses on the creation of methods that accurately extract symptom-focused measures, whose variation lies between that of speech and mood severity, and that are robust to conditions, both environmental and social, in which the data were recorded. The methods will be validated on an existing natural speech dataset at the University of Michigan. The unification will provide critical steps towards speech-centered mHealth solutions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
双相情感障碍是一种常见的慢性疾病,其特征是从情绪正常(健康)到躁狂(能量增加)和抑郁(能量降低)的病理波动。 情绪转变会对一个人的个人、社会、职业和财务福祉产生深远的影响。 目前的管理是基于临床的,并且依赖于提供者与患者的互动。然而,服务需求的增长已经超过了服务能力,需要对医疗服务的提供方式进行根本性的改变。 该项目将创建新的算法,可以处理从智能手机使用中自然收集的语音数据,以测量行为和行为变化,并将这些测量结果与双相情感障碍症状的严重程度联系起来。 这将导致新的早期预警信号的产生,表明需要临床干预。 自然行为提供了有关个人健康的丰富信息。 然而,在评估健康状况时,临床医生通常会在基于传统医疗方法(检查、实验室和调查)的护理点获取横截面医疗数据。 下一代“精准健康”取决于包容性和整体性的方法,捕捉人们生活中健康的变化。这非常重要,因为 1.3 亿美国人患有慢性病,需要有效的监测策略。语音是一种很有前景的情绪监测媒介。临床医生在评估人类疾病时会主观评估言语的形式和内容,因为言语会因情绪和健康状态的变化而改变。然而,虽然语音很容易记录,但以语音为中心的移动监控解决方案目前尚未公开。 该技术既不够准确,也不够稳健。 核心挑战是信号本身:语音本质上是可变且复杂的。 现有技术不足以处理这种复杂性,限制了以语音为中心的情绪监测技术的准确性和鲁棒性。该项目将创建新颖且强大的方法来从语音中提取情绪症状严重程度测量值。情绪在临床上通过汉密尔顿抑郁评定量表 (HamD) 和年轻躁狂评定量表 (YMRS) 进行量化。 该技术的重点是创建能够准确提取以症状为中心的测量值的方法,这些测量值的变化在于言语和情绪严重程度之间,并且对于记录数据的环境和社会条件都具有鲁棒性。 这些方法将在密歇根大学现有的自然语音数据集上进行验证。 此次统一将为实现以语音为中心的移动医疗解决方案迈出关键一步。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Capturing Mismatch between Textual and Acoustic Emotion Expressions for Mood Identification in Bipolar Disorder
捕获文本和声音情感表达之间的不匹配,以识别双相情感障碍的情绪
  • DOI:
    10.21437/interspeech.2023-1990
  • 发表时间:
    2023-08-20
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Minxue Niu;Amrit Romana;Mimansa Jaiswal;M. McInnis;Emily Mower Provost
  • 通讯作者:
    Emily Mower Provost
An Engineering View on Emotions and Speech: From Analysis and Predictive Models to Responsible Human-Centered Applications
情绪和言语的工程视角:从分析和预测模型到负责任的以人为本的应用
  • DOI:
    10.1109/jproc.2023.3276209
  • 发表时间:
    2023-10-01
  • 期刊:
  • 影响因子:
    20.6
  • 作者:
    Shrikanth S. Narayanan
  • 通讯作者:
    Shrikanth S. Narayanan
Learning Paralinguistic Features from Audiobooks through Style Voice Conversion
通过风格语音转换从有声读物中学习副语言特征
  • DOI:
    10.18653/v1/2021.naacl-main.377
  • 发表时间:
    2021-06-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zakaria Aldeneh;Matthew Perez;Emily Mower Provost
  • 通讯作者:
    Emily Mower Provost
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Emily Provost其他文献

Emily Provost的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Emily Provost', 18)}}的其他基金

RI: Small: Advancing the Science of Generalizable and Personalizable Speech-Centered Self-Report Emotion Classifiers
RI:小:推进以语音为中心的可概括和个性化的自我报告情绪分类器的科学
  • 批准号:
    2230172
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
A Workshop for Young Female Researchers in Speech Science and Technology
语音科学与技术领域年轻女性研究人员研讨会
  • 批准号:
    1835284
  • 财政年份:
    2018
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
CAREER: Automatic Speech-Based Longitudinal Emotion and Mood Recognition for Mental Health Monitoring and Treatment
职业:基于语音的自动纵向情感和情绪识别,用于心理健康监测和治疗
  • 批准号:
    1651740
  • 财政年份:
    2017
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
WORKSHOP: Doctoral Consortium at the International Conference on Multimodal Interaction (ICMI 2016)
研讨会:多模式交互国际会议上的博士联盟 (ICMI 2016)
  • 批准号:
    1641044
  • 财政年份:
    2016
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
RI: Small: Collaborative Research: Exploring Audiovisual Emotion Perception using Data-Driven Computational Modeling
RI:小型:协作研究:使用数据驱动的计算模型探索视听情感感知
  • 批准号:
    1217183
  • 财政年份:
    2012
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant

相似国自然基金

ALKBH5介导的SOCS3-m6A去甲基化修饰在颅脑损伤后小胶质细胞炎性激活中的调控作用及机制研究
  • 批准号:
    82301557
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
miRNA前体小肽miPEP在葡萄低温胁迫抗性中的功能研究
  • 批准号:
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
PKM2苏木化修饰调节非小细胞肺癌起始细胞介导的耐药生态位的机制研究
  • 批准号:
    82372852
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于翻译组学理论探究LncRNA H19编码多肽PELRM促进小胶质细胞活化介导电针巨刺改善膝关节术后疼痛的机制研究
  • 批准号:
    82305399
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
CLDN6高表达肿瘤细胞亚群在非小细胞肺癌ICB治疗抗性形成中的作用及机制研究
  • 批准号:
    82373364
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

RI: Small: Advancing the Science of Generalizable and Personalizable Speech-Centered Self-Report Emotion Classifiers
RI:小:推进以语音为中心的可概括和个性化的自我报告情绪分类器的科学
  • 批准号:
    2230172
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: From ultrasound and MRI to articulatory and acoustic models of child speech development
合作研究:RI:小型:从超声和 MRI 到儿童言语发展的发音和声学模型
  • 批准号:
    2006818
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: From Ultrasound and MRI to articulatory and acoustic models of child speech development
合作研究:RI:小型:从超声和 MRI 到儿童言语发展的发音和声学模型
  • 批准号:
    2006979
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
RI: Small: Collaborative Research: Automatic Creation of New Speech Sound Inventories
RI:小型:协作研究:自动创建新语音库存
  • 批准号:
    1910319
  • 财政年份:
    2019
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
RI: Small: Collaborative Research: Automatic Creation of New Speech Sound Inventories
RI:小型:协作研究:自动创建新语音库存
  • 批准号:
    1909075
  • 财政年份:
    2019
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了