FW-HTF-P: Investigating Acceptability in the Workforce of Collaborative Robots that Provide and Request Assistance on an As-Needed Basis

FW-HTF-P:调查按需提供和请求帮助的协作机器人的劳动力接受度

基本信息

  • 批准号:
    2026559
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-11-01 至 2022-10-31
  • 项目状态:
    已结题

项目摘要

The goal of this project is to investigate the social acceptability of collaborative robotic assistants, as-needed, amongst human workers in manufacturing and warehousing to address fear of workplace robots. The project investigates the perception of robotic assistants that attempt to preserve independence, recognition of worker contribution, and emotional well-being, while ensuring safety. This is done by contributing artificial intelligence (AI) that enables robots to intervene for assistance in simultaneous physical interactions such as object lifting only when necessary, i.e., on an as-needed basis. The work has the potential to revitalize manufacturing in rural North America, where fear of robots taking over human jobs is prevalent. The research team will be extensively involved in developing connections with the St. Lawrence County Industrial Development Agency, targeted toward supporting small businesses in the North Country Area. Through these connections, the research team will collaborate with local workers and managers to understand perceptions of robotics in the workplace. They will also provide demonstrations of proposed AI technology that provides assistance only when necessary, in order to preserve worker independence and job security while ensuring safety. The project will involve researchers at the confluence of robotics, organizational psychology, and physical therapy, and provide multi-disciplinary research and curricular opportunities to students from 2-year and 4-year colleges with limited technological opportunities in the North Country region.As part of this planning grant, two objectives will be accomplished. First, the researchers will engage in strengthening collaborations in the area of socially acceptable robotics by forging partnerships with companies contributing and using work-place AI, and by organizing a workshop on large-scale concerns for socially acceptable workplace robotics. Second, a novel prototype AI system will be created that automatically predicts need for assistance from multi-viewpoint, multi-modal sensor captures of subjects participating in attempts to lift cartons of varying sizes, masses, and mass distributions. The research team will conduct studies on the effectiveness of the AI system in predicting assistance need by recruiting human participants from the workforce. The planning phase will advance knowledge in future technology and future workers through the contribution of the intelligent need for assistance algorithms, and the assessment of social acceptability of assistance predictors for workplace robotics. Discussions through the workshop are expected to contribute novel lines of thought on multiple fronts: (a) design of AI algorithms for workplace robots that are mindful of large-scale concerns such as assurance of emotional well-being and job-security of large employee groups across several levels; (b) balancing perceptions of safety versus independence from viewpoints of multiple stakeholders, e.g., workers, managers, business owners, and end-users; (c) effect of demographic, geographic, and socioeconomic factors; and (d) long-term economic impact of varying levels of robot autonomy. The ultimate goal of this project is to develop the necessary research personnel, research infrastructure, and foundational work to expand the opportunities for studying future technology, future workers, and future work at the level of a FW-HTF full research proposal.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的目标是根据需要调查制造和仓储领域人类工人对协作机器人助手的社会接受度,以解决对工作场所机器人的恐惧。该项目调查了机器人助理的看法,这些机器人试图在确保安全的同时保持独立性、对工人贡献的认可和情感健康。这是通过贡献人工智能(AI)来实现的,该人工智能使机器人能够仅在必要时(即根据需要)对同步物理交互(例如举起物体)进行干预以提供帮助。这项工作有可能振兴北美农村地区的制造业,那里普遍担心机器人会取代人类的工作。该研究团队将广泛参与发展与圣劳伦斯县工业发展局的联系,旨在支持北部乡村地区的小企业。通过这些联系,研究团队将与当地工人和管理人员合作,了解工作场所中机器人的看法。他们还将展示拟议的人工智能技术,该技术仅在必要时提供帮助,以在确保安全的同时保持工人的独立性和工作保障。该项目将涉及机器人学、组织心理学和物理治疗融合领域的研究人员,并为北部地区技术机会有限的两年制和四年制大学的学生提供多学科研究和课程机会。这笔规划拨款将实现两个目标。首先,研究人员将通过与贡献和使用工作场所人工智能的公司建立伙伴关系,并组织一个关于社会可接受的工作场所机器人的大规模研讨会,加强社会可接受的机器人领域的合作。其次,将创建一个新颖的原型人工智能系统,该系统可以通过多视角、多模式传感器捕获参与尝试举起不同尺寸、质量和质量分布的纸箱的受试者来自动预测需要的帮助。研究团队将通过从劳动力中招募人类参与者来研究人工智能系统在预测援助需求方面的有效性。规划阶段将通过辅助算法的智能需求的贡献以及工作场所机器人辅助预测器的社会可接受性评估来推进对未来技术和未来工人的了解。研讨会上的讨论预计将在多个方面提出新颖的思路:(a)为工作场所机器人设计人工智能算法,该算法考虑到大规模的问题,例如保证大型员工群体的情绪健康和工作安全跨越多个层面; (b) 从工人、管理人员、企业主和最终用户等多个利益相关者的角度平衡对安全与独立的看法; (c) 人口、地理和社会经济因素的影响; (d) 不同水平的机器人自主权的长期经济影响。该项目的最终目标是培养必要的研究人员、研究基础设施和基础工作,以扩大在 FW-HTF 完整研究提案水平上研究未来技术、未来工人和未来工作的机会。该奖项反映了通过使用基金会的智力价值和更广泛的影响审查标准进行评估,NSF 的法定使命被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Post-Lift Analysis of Thermal Imprint for Weight and Effort Detection
用于重量和力度检测的热压印的提升后分析
Predicting Weight and Strenuousness from High-Speed Videos of Subjects Attempting Lift
从尝试举重的受试者的高速视频中预测体重和费力程度
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Natasha Banerjee其他文献

Natasha Banerjee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Natasha Banerjee', 18)}}的其他基金

NRI: FND: Using Multi-Modal Data to Make Robotic Grasp Algorithms Aware of Human Preferences for Safe Collaborative Robot-Human Handover Interactions with Novel Objects
NRI:FND:使用多模态数据使机器人抓取算法了解人类偏好,以实现与新物体的安全协作机器人-人类切换交互
  • 批准号:
    2023998
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似国自然基金

有机工质-导热油ORC直接接触式蒸汽发生器湍流破碎与强化换热协同耦合机制研究
  • 批准号:
    51706195
  • 批准年份:
    2017
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
纳米流体在太阳能中温集热过程的辐射吸收特性与传热机理研究
  • 批准号:
    51206027
  • 批准年份:
    2012
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于共晶盐与导热油直接接触换热的高效储热机理
  • 批准号:
    51106185
  • 批准年份:
    2011
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
转HTFα对脊髓继发性损伤和微循环重建的影响
  • 批准号:
    39970755
  • 批准年份:
    1999
  • 资助金额:
    13.0 万元
  • 项目类别:
    面上项目

相似海外基金

FW-HTF-RL: Success via a Human-Assistive Wearable Technology Partnership Fostering Neurodiverse Individuals' Work Success via an Assistive Wearable Technology
FW-HTF-RL:通过人类辅助可穿戴技术合作伙伴关系取得成功通过辅助可穿戴技术促进神经多样性个体的工作成功
  • 批准号:
    2326270
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research [FW-HTF-RL]: Enhancing the Future of Teacher Practice via AI-enabled Formative Feedback for Job-Embedded Learning
协作研究 [FW-HTF-RL]:通过人工智能支持的工作嵌入学习形成性反馈增强教师实践的未来
  • 批准号:
    2326170
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-RM: Human-in-the-Lead Construction Robotics: Future-Proofing Framing Craft Workers in Industrialized Construction
合作研究:FW-HTF-RM:人类主导的建筑机器人:工业化建筑中面向未来的框架工艺工人
  • 批准号:
    2326160
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-RL: Trapeze: Responsible AI-assisted Talent Acquisition for HR Specialists
合作研究:FW-HTF-RL:Trapeze:负责任的人工智能辅助人力资源专家人才获取
  • 批准号:
    2326193
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-RM: Artificial Intelligence Technology for Future Music Performers
合作研究:FW-HTF-RM:未来音乐表演者的人工智能技术
  • 批准号:
    2326198
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了