Mass Rigidity and Curvature Problems in Mathematical Relativity

数学相对论中的质量刚度和曲率问题

基本信息

  • 批准号:
    2005588
  • 负责人:
  • 金额:
    $ 25.03万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Einstein’s theory of gravity has been a strong driving force for the modern development in several branches of mathematics. Among its profound implications and wide applications, the theory of gravity successfully describes the shape of our universe and predicts celestial objects that were not known to exist, such as black holes. Over the past few decades, remarkable progress using advanced techniques in geometry and analysis has been made to resolve fundamental questions in general relativity, which has also led to the astonishing realization that some celestial objects are governed by the same mathematical principles as daily life objects, such as soap films. This project employs frontier developments in mathematics to investigate those interconnections and to further advance our understanding on the geometric structures of mathematical models of our universe. The project also incorporates mentoring and educational activities to promote geometry, analysis, and their interrelations with other STEM disciplines, to broader communities and to the society. Because of rapid advancement in geometric analysis in recent years, several longstanding questions in general relativity have been largely resolved. A prominent example is the resolution to the positive mass conjecture, including recent work on the spacetime positive mass theorem. At the same time, those resolutions in general relativity have motivated the development of new and unexpected techniques in geometry and analysis. The goal of this project is to interconnect general relativity with neighboring areas in geometry and analysis where some of innovative techniques can be further developed and applied. The scope of the project is to analyze curvature and geometric structure of initial data sets and their spacetime development, arising from mass minimization problems related to quasi-local mass, to investigate scalar curvature problems for compact manifolds and classification of static manifolds, and to characterize Einstein manifolds from the aspect of hyperbolic and conformal geometry. The project develops new ideas and techniques from differential geometry, analysis, partial differential equations, functional analysis, and calculus of variations to tackle fundamental questions in mathematical relativity and in the neighboring areas of geometry and analysis and is anticipated to have impact in other areas of mathematics and in theoretical physics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
爱因斯坦的引力理论一直是数学多个分支现代发展的强大推动力,其深远的影响和广泛的应用,成功地描述了我们宇宙的形状并预测了未知的天体的存在。在过去的几十年里,利用先进的几何和分析技术在解决广义相对论的基本问题方面取得了显着的进展,这也导致了令人惊讶的认识,即一些天体受到相同的数学原理的支配。作为日常生活该项目利用数学的前沿发展来研究这些相互联系,并进一步增进我们对宇宙数学模型的几何结构的理解。该项目还纳入了指导和教育活动,以促进几何、分析和计算。由于近年来几何分析的快速发展,广义相对论中的几个长期存在的问题已基本得到解决,其中包括积极的大众猜想。最近的工作与此同时,广义相对论中的这些解决方案推动了几何和分析领域新的和意想不到的技术的发展,该项目的目标是将广义相对论与几何和分析中的一些创新领域联系起来。该项目的范围是分析由与准局部质量相关的质量最小化问题引起的初始数据集的曲率和几何结构及其时空发展,以研究紧凑的标量曲率问题。该项目从微分几何、分析、偏微分方程、泛函分析和变分计算中开发了新的思想和技术,以解决流形的基本问题。数学相对论以及几何和分析的邻近领域,预计会对数学和理论物理的其他领域产生影响。该奖项反映了 NSF 的法定使命,并通过使用基金会的评估进行评估,被认为值得支持智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
New asymptotically flat static vacuum metrics with near Euclidean boundary data
具有近欧几里得边界数据的新渐近平坦静态真空度量
  • DOI:
    10.1063/5.0089527
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    An, Zhongshan;Huang, Lan
  • 通讯作者:
    Huang, Lan
Intrinsic Flat Convergence of Points and Applications to Stability of the Positive Mass Theorem
点的本质平坦收敛及其在正质量定理稳定性中的应用
  • DOI:
    10.1007/s00023-022-01158-0
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Huang, Lan;Lee, Dan A.;Perales, Raquel
  • 通讯作者:
    Perales, Raquel
Trapped Surfaces, Topology of Black Holes, and the Positive Mass Theorem
俘获面、黑洞拓扑和正质量定理
Book Review: Geometric relativity
书评:几何相对论
Scalar curvature deformation and mass rigidity for ALH manifolds with boundary
具有边界的 ALH 流形的标量曲率变形和质量刚度
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lan-Hsuan Huang其他文献

Lan-Hsuan Huang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lan-Hsuan Huang', 18)}}的其他基金

Geometric Boundary Value Problems in General Relativity
广义相对论中的几何边值问题
  • 批准号:
    2304966
  • 财政年份:
    2023
  • 资助金额:
    $ 25.03万
  • 项目类别:
    Standard Grant
Geometric Boundary Value Problems in General Relativity
广义相对论中的几何边值问题
  • 批准号:
    2304966
  • 财政年份:
    2023
  • 资助金额:
    $ 25.03万
  • 项目类别:
    Standard Grant
Conference: NEWGA - Northeast Workshop in Geometric Analysis
会议:NEWGA - 几何分析东北研讨会
  • 批准号:
    2231711
  • 财政年份:
    2022
  • 资助金额:
    $ 25.03万
  • 项目类别:
    Standard Grant
CAREER: Geometric Problems in General Relativity
职业:广义相对论中的几何问题
  • 批准号:
    1452477
  • 财政年份:
    2015
  • 资助金额:
    $ 25.03万
  • 项目类别:
    Continuing Grant
Geometric Partial Differential Equations in General Relativity
广义相对论中的几何偏微分方程
  • 批准号:
    1308837
  • 财政年份:
    2013
  • 资助金额:
    $ 25.03万
  • 项目类别:
    Continuing Grant
Geometric Problems in General Relativity
广义相对论中的几何问题
  • 批准号:
    1301645
  • 财政年份:
    2012
  • 资助金额:
    $ 25.03万
  • 项目类别:
    Standard Grant
Geometric Problems in General Relativity
广义相对论中的几何问题
  • 批准号:
    1005560
  • 财政年份:
    2010
  • 资助金额:
    $ 25.03万
  • 项目类别:
    Standard Grant

相似国自然基金

具非负Ricci曲率流形的拓扑刚性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
度量测度空间的曲率维数条件与刚性
  • 批准号:
    12201596
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
超曲面几何中若干不等式与刚性问题研究
  • 批准号:
    11871406
  • 批准年份:
    2018
  • 资助金额:
    53.0 万元
  • 项目类别:
    面上项目
单位球面中子流形的刚性和分类问题研究
  • 批准号:
    11801246
  • 批准年份:
    2018
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
正曲率流形上对偶叶状结构的水平度量
  • 批准号:
    11801337
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

The geometry, rigidity and combinatorics of spaces and groups with non-positive curvature feature
具有非正曲率特征的空间和群的几何、刚度和组合
  • 批准号:
    2305411
  • 财政年份:
    2023
  • 资助金额:
    $ 25.03万
  • 项目类别:
    Standard Grant
The geometry, rigidity and combinatorics of spaces and groups with non-positive curvature feature
具有非正曲率特征的空间和群的几何、刚度和组合
  • 批准号:
    2305411
  • 财政年份:
    2023
  • 资助金额:
    $ 25.03万
  • 项目类别:
    Standard Grant
Rigidity and Boundaries in Non-Positive Curvature
非正曲率的刚度和边界
  • 批准号:
    2204339
  • 财政年份:
    2022
  • 资助金额:
    $ 25.03万
  • 项目类别:
    Standard Grant
Rigidity and Boundaries in Non-Positive Curvature
非正曲率的刚度和边界
  • 批准号:
    2204339
  • 财政年份:
    2022
  • 资助金额:
    $ 25.03万
  • 项目类别:
    Standard Grant
Geometric analysis and comparison geometry on weighted manifolds
加权流形上的几何分析和比较几何
  • 批准号:
    20J11328
  • 财政年份:
    2020
  • 资助金额:
    $ 25.03万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了