Geometric Variational Problems in Classical and Higher Rank Teichmuller theory

经典和高阶Teichmuller理论中的几何变分问题

基本信息

  • 批准号:
    2005551
  • 负责人:
  • 金额:
    $ 54.07万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

This project has directions both in term of advancing our understanding of mathematics and in building the nation's scientific and technical workforce. The mathematical part aims to advance our understanding of the shapes that surfaces present when they are most efficiently navigating their environment. Of course, the notion of efficient depends on the context, so the project considers a number of settings, expecting to find both differences and similarities in the optimal shapes as the criteria for "best shape" are changed. In terms of education, the setting is that nation will need about a million more engineers in the coming decade than we expect the pipeline, as it is currently configured, to produce. At the same time, students from less well-resourced high schools, even if smart and hard-working and interested in a career in science, technology, engineering or mathematics, leave those STEM fields at an alarming rate, as they have trouble transitioning from high school to college. A program led by the PI has achieved notable success in cutting the attrition from STEM students of high potential but less-than-optimal preparation: the grant will help grow, sustain, develop and disseminate information about this comprehensive holistic approach to retention of students in STEM. The project will investigate, via harmonic maps, the asymptotic holonomy of surface group representations in the Hitchin component of several low rank Lie groups. The equivariant harmonic maps from surfaces to the associated symmetric spaces have holomorphic invariants, the geometric topology of which can predict the holonomy of the representation, up to a decaying error. At the same time, the error estimates are strong enough to suggest a unity of approaches: a rescaling of the range and the maps produces a harmonic map to a building, while an apparently different building may be constructed algebraically via an associated real closed field and a valuation. Other projects include finding a new basic minimal surface in three-space through moduli space techniques, a new type of uniformized metric through geometric analytic techniques, and a refinement of a classical circle-packing result on surfaces. The PI will continue his mentorship of undergraduates, graduate students, and postdoctoral scholars.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的方向既在于增进我们对数学的理解,又在于建设国家的科学和技术劳动力。数学部分旨在加深我们对表面在最有效地导航其环境时所呈现的形状的理解。当然,高效的概念取决于具体情况,因此该项目考虑了多种设置,期望在“最佳形状”标准发生变化时找到最佳形状的差异和相似之处。 在教育方面,未来十年国家将需要比我们目前配置的管道所能生产的工程师多大约一百万的工程师。与此同时,来自资源较差高中的学生,即使聪明、勤奋,对科学、技术、工程或数学领域的职业感兴趣,也会以惊人的速度离开这些 STEM 领域,因为他们在从 STEM 领域过渡时遇到困难。高中到大学。由 PI 领导的一项计划在减少具有高潜力但未达到最佳准备的 STEM 学生的流失方面取得了显著成功:这笔赠款将有助于发展、维持、发展和传播有关这种留住学生的全面整体方法的信息。干。 该项目将通过调和映射研究几个低阶李群的希钦分量中表面群表示的渐近完整性。从表面到相关对称空间的等变调和映射具有全纯不变量,其几何拓扑可以预测表示的完整性,直至衰减误差。 同时,误差估计足够强大,足以建议采用统一的方法:范围和地图的重新缩放会生成建筑物的谐波地图,而明显不同的建筑物可以通过相关的实闭场以代数方式构建,并且估价。其他项目包括通过模空间技术在三空间中找到一个新的基本最小曲面,通过几何分析技术找到一种新型的统一度量,以及对曲面上经典的圆堆积结果进行细化。 PI 将继续对本科生、研究生和博士后学者进行指导。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
PLATEAU PROBLEMS FOR MAXIMAL SURFACES IN PSEUDO-HYPERBOLIC SPACE
伪双曲空间中最大曲面的平台问题
HIGGS BUNDLES, HARMONIC MAPS, AND PLEATED SURFACES
希格斯束、调和图和褶皱表面
  • DOI:
  • 发表时间:
    2024-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ott, Andreas;Swoboda, Jan;Wentworth, Richard;Wolf, Michael
  • 通讯作者:
    Wolf, Michael
PLANAR MINIMAL SURFACES WITH POLYNOMIAL GROWTH IN THE Sp(4,R)-SYMMETRIC SPACE
Sp(4,R)对称空间中多项式增长的平面极小曲面
  • DOI:
  • 发表时间:
    2025-01
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Tamburelli, Andrea;Wolf, Michael
  • 通讯作者:
    Wolf, Michael
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Wolf其他文献

Anisotropic neural deblurring for MRI acceleration
用于 MRI 加速的各向异性神经去模糊
On-Field Performance of National Football League Players After Return From Concussion
国家橄榄球联盟球员脑震荡恢复后的场上表现
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Neil S. Kumar;Matthew A Chin;Craig A. O’Neill;A. Jakoi;L. Tabb;Michael Wolf
  • 通讯作者:
    Michael Wolf
Die Anatomie des Beckenbodens
贝肯博登解剖学
  • DOI:
    10.1055/a-2068-2834
  • 发表时间:
    2023-08-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Wolf
  • 通讯作者:
    Michael Wolf
Detailed Analysis of the Relation Between Bipolar Electrode Spacing and Far- and Near-Field Electrograms.
双极电极间距与远、近场电图关系的详细分析。
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Takigawa;J. Relan;Ruairidh Martin;Steven J. Kim;T. Kitamura;G. Cheniti;K. Vlachos;X. Pillois;A. Frontera;G. Massoullié;N. Thompson;Claire A. Martin;F. Bourier;A. Lam;Michael Wolf;J. Duchâteau;N. Klotz;T. Pambrun;A. Denis;N. Derval;J. Magat;J. Naulin;M. Merle;Florent Collot;B. Quesson;H. Cochet;M. Hocini;M. Haïssaguerre;F. Sacher;P. Jaïs
  • 通讯作者:
    P. Jaïs
Limits in ?ℳℱ of Teichmüller geodesics
Teichmüller 测地线 ?ℳℱ 的极限

Michael Wolf的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Wolf', 18)}}的其他基金

Recent Developments on Geometric Measure Theory and its Applications
几何测度理论及其应用的最新进展
  • 批准号:
    2001095
  • 财政年份:
    2020
  • 资助金额:
    $ 54.07万
  • 项目类别:
    Standard Grant
Creating technical leaders from early collegians of exceptional promise: a comprehensive program for demolishing barriers to persistence.
从具有杰出前途的早期大学生中培养技术领导者:消除持久障碍的综合计划。
  • 批准号:
    1565032
  • 财政年份:
    2016
  • 资助金额:
    $ 54.07万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Geometric Structures of Higher Teichmuller Spaces
FRG:合作研究:高等Teichmuller空间的几何结构
  • 批准号:
    1564374
  • 财政年份:
    2016
  • 资助金额:
    $ 54.07万
  • 项目类别:
    Continuing Grant
The Fifth Ahlfors-Bers Colloquium (2011)
第五届 Ahlfors-Bers 研讨会 (2011)
  • 批准号:
    1101595
  • 财政年份:
    2011
  • 资助金额:
    $ 54.07万
  • 项目类别:
    Standard Grant
Teichmuller theory and Low-Dimensional Geometric Variational Problems
Teichmuller理论和低维几何变分问题
  • 批准号:
    1007383
  • 财政年份:
    2010
  • 资助金额:
    $ 54.07万
  • 项目类别:
    Standard Grant
Teichmuller Theory and Low-Dimensional Geometric Variational Problems
Teichmuller 理论和低维几何变分问题
  • 批准号:
    0505603
  • 财政年份:
    2005
  • 资助金额:
    $ 54.07万
  • 项目类别:
    Continuing Grant
Vertical Integration of Research and Education in the Mathematical Sciences
数学科学研究与教育的垂直整合
  • 批准号:
    0240058
  • 财政年份:
    2003
  • 资助金额:
    $ 54.07万
  • 项目类别:
    Continuing Grant
Collaborative Research: FRG: Minimal Surfaces, Moduli Spaces, and Computation
合作研究:FRG:最小曲面、模空间和计算
  • 批准号:
    0139887
  • 财政年份:
    2002
  • 资助金额:
    $ 54.07万
  • 项目类别:
    Standard Grant
RUI: Halogens in Granitic Systems
RUI:花岗岩系统中的卤素
  • 批准号:
    9902185
  • 财政年份:
    1999
  • 资助金额:
    $ 54.07万
  • 项目类别:
    Standard Grant
Teichmuller Theory and Geometric Variational Problems
Teichmuller 理论和几何变分问题
  • 批准号:
    9971563
  • 财政年份:
    1999
  • 资助金额:
    $ 54.07万
  • 项目类别:
    Continuing Grant

相似国自然基金

变分法在各式多体系统上周期解存在性问题的应用
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
分数阶Klein-Gordon问题和相关变分法的研究
  • 批准号:
    12126306
  • 批准年份:
    2021
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
分数阶Klein-Gordon问题和相关变分法的研究
  • 批准号:
    12126334
  • 批准年份:
    2021
  • 资助金额:
    10.0 万元
  • 项目类别:
    数学天元基金项目
N-体问题中的周期轨道研究
  • 批准号:
    11901279
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
紧spin流形上Dirac方程及相关问题的研究
  • 批准号:
    11801499
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Rigidity and boundary phenomena for geometric variational problems
几何变分问题的刚性和边界现象
  • 批准号:
    DE230100415
  • 财政年份:
    2023
  • 资助金额:
    $ 54.07万
  • 项目类别:
    Discovery Early Career Researcher Award
Stability in Geometric Variational Problems
几何变分问题的稳定性
  • 批准号:
    2304432
  • 财政年份:
    2023
  • 资助金额:
    $ 54.07万
  • 项目类别:
    Standard Grant
Scalar curvature and geometric variational problems
标量曲率和几何变分问题
  • 批准号:
    2303624
  • 财政年份:
    2023
  • 资助金额:
    $ 54.07万
  • 项目类别:
    Standard Grant
Geometric Variational Problems and Rearrangement Inequalities
几何变分问题和重排不等式
  • 批准号:
    RGPIN-2020-06826
  • 财政年份:
    2022
  • 资助金额:
    $ 54.07万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Existence, regularity, uniqueness and stability in anisotropic geometric variational problems
职业:各向异性几何变分问题的存在性、规律性、唯一性和稳定性
  • 批准号:
    2143124
  • 财政年份:
    2022
  • 资助金额:
    $ 54.07万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了