Understanding the Role of Activated Oxygen Species in the Room Temperature Conversion of Methane to Methanol

了解活性氧在甲烷室温转化为甲醇中的作用

基本信息

  • 批准号:
    2025709
  • 负责人:
  • 金额:
    $ 35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-12-01 至 2024-11-30
  • 项目状态:
    已结题

项目摘要

Among fossil resources, natural gas - especially methane (its chief component) – is the most attractive feedstock for producing a wide range of hydrocarbon-based commodity chemicals. As the world’s leading methane producer, and with vast reservoirs of shale methane, as well as the future availability of a significant amount of biogas methane, the U.S. is in position to lead the world in a methane-to-chemicals revolution. Unfortunately, existing methane conversion processes are energetically inefficient, resulting in significant carbon dioxide (CO2) emissions. One promising alternative to existing processes for methane activation is low temperature, aqueous electrochemical conversion as promoted by catalysts. When paired with renewable energy sources, like wind and solar, electrocatalytic processes can theoretically achieve completely CO2-free production of chemicals and fuels from methane. To that end, the project investigates various electrocatalytic methane reaction pathways, with the eventual goal of enabling the development of inexpensive, efficient, and economical fuels and chemicals, such as methanol.Specifically, the project will combine two high-level scientific aims to investigate five known pathways to create the surface-active oxygen species needed to enable the methane-to-methanol reaction. The first aim focuses on identifying the types of activated oxygen species and the effects of electrochemical potential on reaction selectivity and activity. For each active oxygen pathway, the second aim focuses on identifying the rate determining step by combining in-situ characterization of the surface species during reaction with electrochemical data. Together the two aims combine standard electrochemical techniques with surface enhanced infrared spectroscopy, isotope labeling and GC/MS product characterization to uncover the rate, selectivity, and reaction order for each pathway. To enable the five pathways, only 3 different catalysts are needed: oxidized polycrystalline Pt, RuO2 and NiO:ZrO2. The number of catalyst chemistries and form factors are purposely limited, to promote a depth of understanding that can inform further development of additional catalysts that have even greater activity towards methane activation and selectivity for methanol formation. The fundamental understanding generated through the scientific aims will be fed directly to two undergraduate-led engineering activities, allowing for strong integration of research and education. Laboratory-based undergraduate research will focus on integrating down-selected catalysts into new reactor schemes. Additionally, undergraduate senior design teams will focus on designing the supporting balance-of-plant around the new reactors, and performing preliminary techno-economic assessments of various configurations. Finally, the project will be balanced by several hands-on outreach programs to under-represented high-school students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化石资源中,天然气 - 尤其是甲烷(其主要成分) - 是生产各种烃类商品化学品的最具吸引力的原料。作为世界领先的甲烷生产国,以及巨大的页岩甲烷储量,以及未来的大量沼气甲烷,美国可以带领世界进行甲烷对化学革命。不幸的是,现有的甲烷转化过程在能量上无效,导致二氧化碳(CO2)的大量排放。甲烷激活的现有过程的一种承诺替代方法是催化剂促进的低温,水电化学转化。当与风能和太阳能等可再生能源配对时,理论上可以从甲烷中实现完全无二氧化碳和燃料的生产。为此,该项目调查了各种电催化甲烷反应途径,事件的目标是实现廉价,高效和经济燃料和化学物质的发展,例如甲醇。具体而言,该项目将结合两个高级科学目标,以调查五个已知的途径,以调查所需的表面活性氧气,从而创造出甲醇的反应。第一个目的是确定活性氧的类型以及电化学潜力对反应选择性和活性的影响。对于每个活性氧途径,第二个目标集中在与电化学数据反应过程中表面物种的原位表征相结合,从而确定速率确定步骤。这两个目的共同将标准电化学技术与表面增强的红外光谱,同位素标记和GC/MS产品表征相结合,以发现每种途径的速率,选择性和反应顺序。为了启用五个途径,只需要3种不同的催化剂:氧化的多晶PT,Ruo2和Nio:Zro2。催化剂化学和形式因素的数量是有意义的,以促进理解的深度,以进一步开发其他催化剂,这些催化剂对甲烷激活和甲基化的选择性的活性更大。通过科学目的产生的基本理解将直接提供给两项由本科领导的工程活动,从而使研究和教育的强大整合。基于实验室的本科研究将集中于将下降的催化剂整合到新的反应堆方案中。此外,本科高级设计团队将专注于设计新反应堆周围的支撑式植物余额,并对各种配置进行初步的技术经济评估。最后,该项目将通过几个动手外展计划来平衡代表性不足的高中生。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响审查标准通过评估来诚实地支持支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Mustain其他文献

Engineering zinc slurry anodes for high-performance primary alkaline batteries
  • DOI:
    10.1016/j.jpowsour.2024.234818
  • 发表时间:
    2024-08-30
  • 期刊:
  • 影响因子:
  • 作者:
    Brian Lenhart;Devadharshini Kathan;Matthew Hull;Travis Omasta;Daniel Gibbons;Michael Zuraw;William Mustain
  • 通讯作者:
    William Mustain

William Mustain的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Mustain', 18)}}的其他基金

GOALI: Collaborative Research: Electrochemical CO2 Separation and Capture through Design of Carbonate-Selective Catalysts and Ionomers
目标:合作研究:通过设计碳酸盐选择性催化剂和离聚物进行电化学二氧化碳分离和捕获
  • 批准号:
    1803189
  • 财政年份:
    2018
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
EAGER: Electrochemical Reactor for Spontaneous Power Generation and CO2 Capture
EAGER:用于自发发电和二氧化碳捕获的电化学反应器
  • 批准号:
    1005303
  • 财政年份:
    2010
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant

相似国自然基金

面向情感引导的多角色多模态交互关键技术研究
  • 批准号:
    62376084
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
互动视角下品牌数字人对消费者的影响研究:数字人的角色、虚实结合与情感策略的作用
  • 批准号:
    72372057
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
PfAP2-R介导的PfCRT转录调控在恶性疟原虫对喹啉类药物抗性中的作用及机制研究
  • 批准号:
    82372275
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
旅游参与度差异视角下乡村妇女社会角色变迁、自我效能感及其关联机制研究
  • 批准号:
    72362010
  • 批准年份:
    2023
  • 资助金额:
    27 万元
  • 项目类别:
    地区科学基金项目
喜忧参半:服务机器人角色对旅游企业员工幸福感的双路径影响机制研究
  • 批准号:
    72302099
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
  • 批准号:
    10751126
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
Understanding and Engineering Chemically Activated Ubiquitin Ligases
了解和设计化学激活的泛素连接
  • 批准号:
    10713454
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
Understanding Mechanisms and Sex-Differences in Visceral Pain
了解内脏疼痛的机制和性别差异
  • 批准号:
    10635564
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
Understanding intrinsic resistance to direct KRAS inhibition in colorectal cancers
了解结直肠癌对直接 KRAS 抑制的内在抵抗
  • 批准号:
    10346971
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
Understanding the role of activated sludge in oxygen transfer to improve wastewater treatment sustainability
了解活性污泥在氧转移中的作用,以提高废水处理的可持续性
  • 批准号:
    2146781
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了