Collaborative Research: How fast do tidewater glaciers melt? Quantifying the processes that control boundary layer transport across the ice-ocean interface
合作研究:潮水冰川融化的速度有多快?
基本信息
- 批准号:2023269
- 负责人:
- 金额:$ 25.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Sea-level rise will affect millions of people in coastal communities within the next several decades. Accurate predictions of how quickly it will rise is challenging because it depends on many different processes and how these processes interact with and feedback on each other. One process that may play a surprisingly large role is the effect of small swirls and eddies (only a few feet across) of warm water that control the rate of ice melt at the near-vertical cliff faces of the world’s marine-terminating (tidewater) glaciers. At these glaciers, ice flows directly into the ocean and melts underwater or calves icebergs. Melting of the ice produces freshwater that flows out near the ocean surface and drives a return flow that draws in deep warmer ocean water toward the glacier. According to current theory, increasing the rate of ice melt increases the strength at which warmer ocean water is pulled in towards the ice face, which further enhances the melting. The details of this process - particularly the small-scale dynamics near the ice face - have never been measured because the calving ice cliffs are too dangerous to make measurements. Here we propose to use a highly specialized underwater robot (a remotely operated vehicle, or “ROV”) with state-of-the-art optical and acoustic instruments to observe the melt rate and the processes that control it. One of the novel aspects is the use of “melt stakes” - 6 ft long rods that will be driven into the glacier face by the ROV and monitored continuously to determine the melt processes. These stakes then provide a frame of reference for our ROV to make a suite of detailed measurements of the shape of the glacier face, the dynamics of the currents adjacent to it, and how the ice-water interface evolves. At the same time, we will observe the local ocean environment in the fjord - the currents, salinity and temperature - which are the main ingredients we need to predict ice melt in larger-scale and climate models. Our analyses will combine field data with a high-resolution fluid-flow model that recreates the conditions along the ice with realistic water properties. The combination of model and data will be used to refine our melt predictions and verify these directly using our observed measurements. At the end of the project, we will be able to extend our results to estimate how much melt is occurring for tidewater glaciers around the globe, and how this may change in time. Beyond this importance to society and the scientific community, this grant provides broader impacts across several levels: (1) mentorship and support for two early career women (2) support for three graduate students in interdisciplinary ice-ocean studies, (3) experiential opportunities, funding, and mentorship for 45 senior-year undergraduate students, whose capstone projects will directly contribute to this project while being supervised by our gender and culturally diverse team of engineers and technical staff, (4) classroom experiments showing buoyancy and convection to engage K-12 students and the general public, and (5) two teams of high-school women will additionally be involved and make observations through Girls in Icy Fjords expeditions.Melting at the ice-ocean interface of marine-terminating glaciers influences the rate of mass loss from the world's ice sheets. In addition to contributing to sea-level rise, details of the melt process dictate the depth at which fresh meltwater enters the ocean (which in turn affects ocean circulation on a variety of scales) and alters calving rates. Existing theory suggests that the rate of submarine melting along these ice faces is set by the strength of subglacial discharge. However, recent observations find unexpectedly high melt rates over broad sections of glacier termini, even outside discharge plume areas. The observed order of magnitude discrepancies between observed and predicted melt rates suggests the presence of energetic dynamics elsewhere along the ice face that drive near-ice turbulent flows. We hypothesize that this discrepancy arises from differences in the rate-controlling physics within the boundary layers. Current turbulent transfer coefficients were derived from stable boundary layers. Yet on vertical glacier ice faces, boundary layers have strong buoyant forcing and marginal stability that likely produce dynamics not captured by laboratory or idealized models. Because buoyant meltwater fluxes provide kinetic energy for near-boundary outer flows -- and because enhancement of those flows leads to enhanced melting -- there is potential for strong positive feedbacks in the dynamics. As a result, small errors in the melt parameters or the parameterization functional form can have significant consequences to the total melt calculation. No studies have yet to make observations immediately next to near-vertical ice faces, or measure melt dynamics with the resolution necessary to investigate these dynamical feedbacks. This grant supports the development of a first-of-its-kind network of coordinated underwater acoustic, optical and in-situ unmanned sensors to be deployed at LeConte Glacier, Alaska. Using methods that meld glaciology, oceanography, and robotics, these systems will collect the first geophysical observations of the turbulent boundary layer at a near-vertical glacier face. Specifically, we will directly measure velocity, salinity and temperature through a buoyancy-forced near-vertical boundary layer and relate these to observations of the subsurface ice morphology (e.g., slope, roughness) across several spatial scales. By combining these data with high-resolution realistic simulations, we will characterize the dominant contributions to boundary layer turbulence and explicitly relate these to local melt rates. Our ultimate goal is to determine what parameters need to be measured (e.g., fjord u,T,S) over what time and space scales, as well as what assumptions can be made in order to connect dynamics from the small-scale ice interface to the large-scale ocean and glacier forcing. This grant builds an observational capacity that does not exist at present. Measurements will span a sufficient range of the parameter space (in ocean temperature, velocity variance and ice morphology) for us and others to test existing and advance new melt models that underlie many ice-ocean community models.This award is co-funded by the Arctic Natural Sciences Program and the Physical Oceanography Program.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
海平面上升将在未来几十年内影响沿海社区的数百万人,准确预测海平面上升的速度具有挑战性,因为它取决于许多不同的过程以及这些过程如何相互作用和相互反馈。可能发挥令人惊讶的巨大作用的是温水的小漩涡和涡流(仅几英尺宽)的影响,它们控制着世界海洋终止(潮水)冰川近乎垂直的悬崖表面的冰融化速度。根据目前的理论,冰直接流入海洋并在水下融化或冰山融化,产生淡水流出海洋表面并驱动回流,将较温暖的深层海水吸向冰川。冰融化的速度增加了将温暖的海水拉向冰面的强度,这进一步增强了融化过程的细节——特别是冰面附近的小尺度动态——从未被测量过,因为产犊冰崖太危险,无法进行测量。在这里,我们建议使用高度专业化的水下机器人(远程操作潜水器,或“ROV”)和最先进的光学和声学仪器来观察融化速率和过程。其中一个新颖的方面是使用“融化桩”——6 英尺长的杆将由 ROV 打入冰川表面并持续监测以确定融化过程。让我们的 ROV 做一个对冰川表面的形状、邻近的水流动态以及冰水界面如何演变进行一系列详细测量。同时,我们将观察峡湾的当地海洋环境 - 水流、盐度。和温度 - 这是我们在更大规模和气候模型中预测冰融化所需的主要成分,我们的分析将结合现场数据与高分辨率流体流动模型,该模型可以通过真实的水特性组合来重建冰沿的条件。模型和数据将是用于完善我们的融化预测,并直接使用我们观测到的测量结果来验证这些结果。在项目结束时,我们将能够扩展我们的结果,以估计全球潮水冰川的融化量,以及这种变化可能会如何变化。除了对社会和科学界的重要性之外,这笔赠款还在多个层面上提供了更广泛的影响:(1)为两名早期职业女性提供指导和支持(2)为三名跨学科海洋研究的研究生提供支持,(3)体验机会、资金和指导面向 45 名高年级本科生,他们的顶点项目将直接为该项目做出贡献,同时由我们的性别和文化多元化的工程师和技术人员团队监督,(4) 课堂实验显示浮力和对流,以吸引 K-12 学生和公众,以及 (5) 两支高中女性团队将另外参与并通过冰冷峡湾探险中的女孩进行观察。海洋终止冰川的冰海界面融化影响了世界冰盖的质量损失除了导致海平面上升之外,融化过程的细节决定了新鲜融水进入海洋的深度(这反过来又影响了各种规模的海洋环流)并改变了冰解速率。现有的理论表明,沿着这些冰面的海底融化速度是由冰下放电的强度决定的,然而,最近的观察发现,在冰川末端的大部分地区,甚至在放电羽流区域之外,融化速度都出乎意料地高。观测到的和预测的融化速率之间的差异表明沿冰面其他地方存在驱动近冰湍流的能量动力学,我们发现这种差异是由于边界层内的速率控制物理差异引起的。然而,在垂直冰川冰面上,边界层具有很强的浮力强迫和边际稳定性,可能会产生实验室或理想模型无法捕获的动力学,因为浮力融水通量提供了动能。对于近边界外流,并且由于这些流的增强会导致熔化增强,因此动力学中可能会出现强烈的正反馈,因此,熔化参数或参数化函数形式中的小误差可能会产生重大后果。尚未有研究立即在接近垂直的冰面附近进行观测,或以研究这些动态反馈所需的分辨率测量融化动力学。协调水声、光学和原位网络将部署在阿拉斯加勒孔特冰川的无人传感器,利用融合冰川学、海洋学和机器人技术的方法,这些系统将收集近乎垂直的冰川表面湍流边界层的首次地球物理观测结果。 、盐度和温度通过浮力驱动的近垂直边界层,并将这些与跨多个空间尺度的地下冰形态(例如坡度、粗糙度)的观测联系起来。通过将这些数据与高分辨率现实模拟相结合,我们将描述边界层湍流的主要贡献,并将其与局部融化速率明确相关。我们的最终目标是确定需要测量哪些参数(例如峡湾 u,T、 S)在什么时间和空间尺度上,以及可以做出什么假设,以便将小规模冰界面的动力学与大规模海洋和冰川强迫联系起来。这项资助建立了一种目前尚不存在的观测能力。展示。测量将跨越足够范围的参数空间(海洋温度、速度方差和冰形态),以便我们和其他人测试现有的和推进许多冰海群落模型基础的新融化模型。该奖项由北极自然科学计划和物理海洋学计划。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Relationship Between Submarine Melt and Subglacial Discharge From Observations at a Tidewater Glacier
- DOI:10.1029/2021jc018204
- 发表时间:2022-10-01
- 期刊:
- 影响因子:3.6
- 作者:Jackson, Rebecca H.;Motyka, Roman J.;Kienholz, Christian
- 通讯作者:Kienholz, Christian
Persistent overcut regions dominate the terminus morphology of a rapidly melting tidewater glacier
- DOI:10.1017/aog.2023.38
- 发表时间:2023-05-29
- 期刊:
- 影响因子:2.9
- 作者:Abib, Nicole;Sutherland, David A.;Pettit, Erin C.
- 通讯作者:Pettit, Erin C.
Subglacial Discharge Reflux and Buoyancy Forcing Drive Seasonality in a Silled Glacial Fjord
- DOI:10.1029/2021jc018355
- 发表时间:2022-05-01
- 期刊:
- 影响因子:3.6
- 作者:Hager, Alexander O.;Sutherland, David A.;Nash, Jonathan D.
- 通讯作者:Nash, Jonathan D.
Internal Gravity Waves Generated by Subglacial Discharge: Implications for Tidewater Glacier Melt
- DOI:10.1029/2022gl102426
- 发表时间:2023-06-28
- 期刊:
- 影响因子:5.2
- 作者:Cusack, J. M.;Jackson, R. H.;Amundson, J. M.
- 通讯作者:Amundson, J. M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Sutherland其他文献
Water safety plans, water quality surveillance and investment planning in Kyrgyzstan
吉尔吉斯斯坦水安全计划、水质监测和投资规划
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
David Sutherland;T. Wood;Nina Vashneva;Venera Zhunusbaeva - 通讯作者:
Venera Zhunusbaeva
Prevalence and outcome of acute pulmonary embolism in hospitalized patients with a history of inflammatory bowel disease.
有炎症性肠病病史的住院患者急性肺栓塞的患病率和结果。
- DOI:
10.1016/j.thromres.2024.05.008 - 发表时间:
2024 - 期刊:
- 影响因子:7.5
- 作者:
Julia Iourinets;Cathryn Sawalski;Parth V Desai;David Sutherland;Parth Shah;Elizabeth S. Bruno;Punit Arora;Muhammad Malik;Axat Patel;Tauseef Akhtar;Jawed Fareed;Y. Brailovsky;Amar Naik;A. Darki - 通讯作者:
A. Darki
David Sutherland的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Sutherland', 18)}}的其他基金
Collaborative Research: RUI: Frontal Ablation Processes on Lake-terminating Glaciers and their Role in Glacier Change
合作研究:RUI:湖终止冰川的锋面消融过程及其在冰川变化中的作用
- 批准号:
2334777 - 财政年份:2024
- 资助金额:
$ 25.32万 - 项目类别:
Continuing Grant
Collaborative Research: AccelNet: Accelerating discoveries at Greenlands marine margins through international collaboration
合作研究:AccelNet:通过国际合作加速格陵兰海洋边缘的发现
- 批准号:
2020447 - 财政年份:2020
- 资助金额:
$ 25.32万 - 项目类别:
Standard Grant
EarthCube RCN: Collaborative Research: Engaging the Greenland Ice Sheet Ocean (GRISO) Science Network
EarthCube RCN:合作研究:参与格陵兰冰盖海洋 (GRISO) 科学网络
- 批准号:
1541390 - 财政年份:2016
- 资助金额:
$ 25.32万 - 项目类别:
Standard Grant
Collaborative Research: Impact of subglacial discharge on turbulent plume dynamics and ocean-glacier heat and mass transfer
合作研究:冰下排放对湍流羽流动力学和海洋-冰川传热传质的影响
- 批准号:
1504521 - 财政年份:2015
- 资助金额:
$ 25.32万 - 项目类别:
Standard Grant
相似国自然基金
汇率制度弹性如何影响宏观经济韧性:理论、实证和政策研究
- 批准号:72303027
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大宗商品如何影响企业资产定价:路径、机制及对策研究
- 批准号:72303171
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
如何应对日趋严重的职场物化?基于员工、组织和数智技术的干预措施研究
- 批准号:72372012
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
如何利用C-14更精确地测海洋光合速率:影响因素和机制研究
- 批准号:42376203
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
如何应对智能时代职业可替代风险?职业敏捷力视角下的适应性应对机制与干预研究
- 批准号:72302090
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321481 - 财政年份:2024
- 资助金额:
$ 25.32万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321480 - 财政年份:2024
- 资助金额:
$ 25.32万 - 项目类别:
Continuing Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333604 - 财政年份:2024
- 资助金额:
$ 25.32万 - 项目类别:
Standard Grant
Collaborative Research: How do plants control sperm nuclear migration for successful fertilization?
合作研究:植物如何控制精子核迁移以成功受精?
- 批准号:
2334517 - 财政年份:2024
- 资助金额:
$ 25.32万 - 项目类别:
Standard Grant
Collaborative Research: Evaluating Access: How a Multi-Institutional Network Promotes Equity and Cultural Change through Expanding Student Voice
合作研究:评估访问:多机构网络如何通过扩大学生的声音来促进公平和文化变革
- 批准号:
2309310 - 财政年份:2024
- 资助金额:
$ 25.32万 - 项目类别:
Continuing Grant