BBSRC-NSF/BIO: IIBR Informatics: Collaborative Research: Inference of isoform-level regulatory infrastructures with studies in steroid-producing cells
BBSRC-NSF/BIO:IIBR 信息学:合作研究:通过对类固醇生成细胞的研究推断异构体水平的监管基础设施
基本信息
- 批准号:2019771
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Cells are the fundamental units that provide functions needed to sustain life in living organisms. Cellular functions are carried out by proteins, products of genes, and the process of producing proteins from genes (i.e., gene expression) is mediated by complex regulation systems. Much remains unknown about the mechanisms of gene regulations. Given all genes in a cell, the regulatory relationships among genes can be represented by networks, called gene regulatory networks. It has been a long-standing challenge to reconstruct these networks experimentally and computationally. A gene can express multiple isoforms (mRNA molecules), and hence produces multiple different proteins, which makes the underlying gene regulatory networks more complicated. Recent advances in single cell RNA-Sequencing (scRNA-Seq) technology has brought new opportunities in resolving high-quality regulatory networks, but also posed new computational challenges. The project aims to computationally reconstruct accurate regulatory networks at the isoform-level from large-scale sequencing data. Educational and outreach activities, such as courses on topics in computational biology and inclusion of minority students, will be carried out. The project will develop efficient approaches to identify expressed isoforms and to determine expression abundances, and then develop a network-reconstruction method which improves current state-of-art. The new computational methods will be validated and applied to the field of immunology--to study cellular mechanisms in steroid-producing cells. The project will make contribution in improvements over existing methods. First, the proposed methods for developing a scalable transcript assembler will enable accurate determination and quantification of the expressed isoforms, and make it possible to build regulatory networks at the level of isoforms to reflect the possible difference in regulatory mechanisms for different isoforms. Second, many recently developed methods for network inference require cells to be pre-ordered with trajectory inference or RNA-velocity to mimic time-series data. Errors in the cell ordering can mislead network inference and lead to false predictions. The project proposes to perform cell ordering and network inference simultaneously, which is expected to provide better results for both cell ordering and network inference. The project will reconstruct transcript-level regulatory networks for different types of steroid-producing cells from both published and newly generated single-cell data. The results of the project can be found at the PI’s website: https://www.cc.gatech.edu/~xzhang954/.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
细胞是提供维持生活组织生活所需功能的基本单位。细胞功能是通过蛋白质,基因产物进行的,从基因产生蛋白质(即基因表达)的过程是由复杂调节系统介导的。关于基因的机制,仍然未知。鉴于细胞中的所有基因,基因之间的调节关系可以由网络表示,称为基因调节网络。在实验和计算上重建这些网络一直是一个长期的挑战。基因可以表达多种同工型(mRNA分子),因此产生多种不同的蛋白质,这使得基因调节网络更加复杂。单细胞RNA-Sequering(SCRNA-SEQ)技术的最新进展为解决高质量的监管网络带来了新的机会,但也带来了新的计算挑战。该项目旨在通过大规模测序数据从同工型级上重建准确的调节网络。将开展教育和宣传活动,例如有关计算生物学主题和少数族裔学生的主题课程。该项目将开发有效的方法来识别表达的同工型并确定表达抽象,然后开发一种网络重建方法,以改善当前的最新前部。新的计算方法将得到验证并应用于免疫学领域 - 研究产生类固醇细胞的细胞机制。该项目将在改进现有方法方面做出贡献。首先,开发可伸缩转录物组件的建议方法将能够准确确定和量化表达的同工型,并可以在同工型水平上构建调节网络,以反映不同同工型的调节机制可能差异。其次,许多最近开发的网络推理方法要求细胞通过轨迹推断或RNA速度预先排序以模拟时间序列数据。单元格排序中的错误可能会误导网络推断并导致错误的预测。简单地执行单元格排序和网络推理的项目建议,预计将为单元格排序和网络推理提供更好的结果。该项目将重建来自已发表和新生成的单细胞数据的不同类型产生类固醇的细胞的成绩单级调节网络。该项目的结果可以在PI的网站上找到:https://www.cc.gatech.edu/~xzhang954/.this奖反映了NSF的法定任务,并通过使用基金会的知识分子优点和更广泛的影响审查标准来通过评估来诚实地支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Studying temporal dynamics of single cells: expression, lineage and regulatory networks
研究单细胞的时间动态:表达、谱系和调控网络
- DOI:10.1007/s12551-023-01090-5
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Pan, Xinhai;Zhang, Xiuwei
- 通讯作者:Zhang, Xiuwei
Maximum likelihood reconstruction of ancestral networks by integer linear programming
- DOI:10.1093/bioinformatics/btaa931
- 发表时间:2021-04-15
- 期刊:
- 影响因子:5.8
- 作者:Rajan,Vaibhav;Zhang,Ziqi;Zhang,Xiuwei
- 通讯作者:Zhang,Xiuwei
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiuwei Zhang其他文献
A visual-thermal image sequence registration method based on motion status statistic feature multi-resolution analysis
一种基于运动状态统计特征多分辨率分析的视热图像序列配准方法
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Xiuwei Zhang;Yanning Zhang;Jing Zhao - 通讯作者:
Jing Zhao
Diagnostic and prognostic value of serum Cripto‐1 in patients with non‐small cell lung cancer
血清 Cripto-1 对非小细胞肺癌患者的诊断及预后价值
- DOI:
10.1111/crj.12793 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Chunhua Xu;C. Chi;Qian Zhang;Y. Wang;Wei Wang;Q. Yuan;P. Zhan;Xiuwei Zhang;Yong Lin - 通讯作者:
Yong Lin
Hybrid Clustering of single-cell gene-expression and cell spatial information via integrated NMF and k-means
通过集成 NMF 和 k-means 对单细胞基因表达和细胞空间信息进行混合聚类
- DOI:
10.1101/2020.11.15.383281 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Sooyoung Oh;Haesun Park;Xiuwei Zhang - 通讯作者:
Xiuwei Zhang
Phylogenetic Transfer of Knowledge for Biological Networks
生物网络知识的系统发育转移
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Xiuwei Zhang;Min Ye;Bernard M. E. Moret - 通讯作者:
Bernard M. E. Moret
On-Demand Business Rule Management Framework for SaaS Application
SaaS 应用程序的按需业务规则管理框架
- DOI:
10.1007/978-3-319-04519-1_9 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Xiuwei Zhang;K. He;Jian Wang;Chong Wang;Zheng Li - 通讯作者:
Zheng Li
Xiuwei Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiuwei Zhang', 18)}}的其他基金
CAREER: Learning Mechanisms from Single Cell Multi-Omics Data
职业:从单细胞多组学数据学习机制
- 批准号:
2145736 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
相似国自然基金
SYNJ1蛋白片段通过促进突触蛋白NSF聚集在帕金森病发生中的机制研究
- 批准号:82201590
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
SYNJ1蛋白片段通过促进突触蛋白NSF聚集在帕金森病发生中的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
NSF蛋白亚硝基化修饰所介导的GluA2 containing-AMPA受体膜稳定性在卒中后抑郁中的作用及机制研究
- 批准号:82071300
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
参加中美(NSFC-NSF)生物多样性项目评审会
- 批准号:
- 批准年份:2019
- 资助金额:2 万元
- 项目类别:国际(地区)合作与交流项目
参加中美(NSFC-NSF)生物多样性项目评审会
- 批准号:31981220281
- 批准年份:2019
- 资助金额:2.3 万元
- 项目类别:国际(地区)合作与交流项目
相似海外基金
BBSRC-NSF/BIO: An AI-based domain classification platform for 200 million 3D-models of proteins to reveal protein evolution
BBSRC-NSF/BIO:基于人工智能的域分类平台,可用于 2 亿个蛋白质 3D 模型,以揭示蛋白质进化
- 批准号:
BB/Y000455/1 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Research Grant
BBSRC-NSF/BIO: An AI-based domain classification platform for 200 million 3D-models of proteins to reveal protein evolution
BBSRC-NSF/BIO:基于人工智能的域分类平台,可用于 2 亿个蛋白质 3D 模型,以揭示蛋白质进化
- 批准号:
BB/Y001117/1 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Research Grant
22-BBSRC/NSF-BIO Building synthetic regulatory units to understand the complexity of mammalian gene expression
22-BBSRC/NSF-BIO 构建合成调控单元以了解哺乳动物基因表达的复杂性
- 批准号:
BB/Y008898/1 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Research Grant
22-BBSRC/NSF-BIO - Interpretable & Noise-robust Machine Learning for Neurophysiology
22-BBSRC/NSF-BIO - 可解释
- 批准号:
BB/Y008758/1 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Research Grant
22-BBSRC/NSF-BIO: Community-dependent CRISPR-cas evolution and robust community function
22-BBSRC/NSF-BIO:群落依赖性 CRISPR-cas 进化和强大的群落功能
- 批准号:
BB/Y008774/1 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Research Grant