MRI: Acquisition of a Near-Field Optical Microscope for Multidisciplinary Research and Education at Louisiana State University

MRI:路易斯安那州立大学购买近场光学显微镜用于多学科研究和教育

基本信息

  • 批准号:
    2019094
  • 负责人:
  • 金额:
    $ 66.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Understanding how nanomaterials function is critical to enabling transformational advances in quantum computing, nanomedicine, energy, and optoelectronics. But studying nanoscale processes is particularly challenging because they are typically very fast with very small spatial dimensions. This project enables researchers to study functional nanomaterials in both ultrafast time and nanoscale space regimes through the awarded multimodal near-field optical microscope. The microscope measures the reflected light from a femtosecond (one quadrillionth, or one-millionth of one billionth, of a second) laser focused onto a metal tip ten-thousandth of a human hair in diameter while the tip scans the surface of a nanomaterial. Beyond advancing discovery and understanding, the microscope also promotes teaching and training at Louisiana State University (LSU). The instrument is housed at the Center for Advanced Microstructures and Devices (CAMD), which has served as the training ground for hundreds of science and engineering undergraduate and graduate students in its nearly 30 years of operation. Installing the microscope at LSU-CAMD introduces synchrotron scientists to near-field optical microscopy and vice-versa, improving the overall depth of research training for both parties. Acquisition of the microscope also augments four upper-undergraduate and graduate-level courses in science and engineering as well as NSF sponsored Research Experience for Undergraduate sites at LSU.Nanoscale chemical processes in solid-state materials occur on time scales of attoseconds to nanoseconds with spatial dimensions below 100 nm. To better understand functional nanoscale materials, scientists must be able to measure and observe their materials properties and dynamic phenomena on their respective space and time scales. The awarded multimodal near-field optical microscope meets these needs by correlating scan probe microscopy with a suite of synergistic optical spectroscopy techniques, beating the diffraction limit, and allowing researchers to uncover the steady-state and dynamic properties of complex nanoscale materials with 10 nm spatial resolution and femtosecond time resolution. The multimodal microscope provides scientists correlated near-field spectroscopy with the following suite of experimental techniques: 1) atomic force microscopy, 2) Fourier transform infrared spectroscopy and mapping with 10 nm spatial resolution, 3) Raman and tip-enhanced Raman spectroscopy, 4) amplitude and phase-resolved near-field imaging, 5) near-field pump-probe spectroscopy and 6) fluorescence lifetime imaging. The interconnectivity of the research team and users makes this multimodal near-field microscope a central unifying instrument at LSU, allowing for the development of new materials, and observation and engineering of novel phenomena, to explore applications in the fields of quantum computing, energy, optoelectronics, and nanomedicine.This award is jointly funded by the Division of Materials Research (DMR) and Division of Chemical, Bioengineering, Environmental and Transport Systems (CBET).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
了解纳米材料的功能对于实现量子计算、纳米医学、能源和光电子学领域的变革性进步至关重要。但研究纳米级过程尤其具有挑战性,因为它们通常速度非常快且空间维度非常小。该项目使研究人员能够通过获奖的多模态近场光学显微镜在超快时间和纳米尺度空间范围内研究功能纳米材料。显微镜测量飞秒(万亿分之一秒,或十亿分之一秒的百万分之一)激光聚焦到直径为人类头发万分之一的金属尖端上的反射光,同时尖端扫描纳米材料的表面。除了促进发现和理解之外,显微镜还促进了路易斯安那州立大学 (LSU) 的教学和培训。该仪器位于先进微结构与器件中心 (CAMD),在近 30 年的运行中,该中心已成为数百名科学与工程本科生和研究生的培训基地。在 LSU-CAMD 安装显微镜向同步加速器科学家介绍了近场光学显微镜,反之亦然,从而提高了双方研究培训的整体深度。购买该显微镜还增强了科学与工程方面的四门本科高年级和研究生水平课程,以及 NSF 资助的路易斯安那州立大学本科生研究经验。固态材料中的纳米级化学过程发生在阿秒到纳秒的时间尺度上,空间尺度为尺寸低于 100 nm。为了更好地理解功能纳米材料,科学家必须能够在各自的空间和时间尺度上测量和观察它们的材料特性和动态现象。获奖的多模态近场光学显微镜通过将扫描探针显微镜与一套协同光学光谱技术相关联,突破衍射极限,并允许研究人员揭示具有 10 nm 空间的复杂纳米级材料的稳态和动态特性,满足了这些需求。分辨率和飞秒时间分辨率。多模态显微镜为科学家提供了相关的近场光谱与以下实验技术套件:1) 原子力显微镜,2) 傅里叶变换红外光谱和空间分辨率为 10 nm 的绘图,3) 拉曼和尖端增强拉曼光谱,4)振幅和相位分辨近场成像,5) 近场泵浦探针光谱和 6) 荧光寿命成像。研究团队和用户的互联性使这款多模态近场显微镜成为路易斯安那州立大学的中央统一仪器,可用于新材料的开发、新颖现象的观察和工程设计,探索量子计算、能源、该奖项由材料研究部(DMR)和化学、生物工程、环境和运输系统部(CBET)联合资助。该奖项体现了NSF的法定使命,经评估认为值得支持利用基金会的智力优势和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kevin McPeak其他文献

Kevin McPeak的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kevin McPeak', 18)}}的其他基金

PFI-TT: A Rapid Multi-Contaminant Degradation System for Water Wells
PFI-TT:水井多污染物快速降解系统
  • 批准号:
    2141162
  • 财政年份:
    2022
  • 资助金额:
    $ 66.5万
  • 项目类别:
    Standard Grant
I-Corps: Chemical-Free Advanced Oxidation Water Treatment System
I-Corps:无化学品高级氧化水处理系统
  • 批准号:
    2111353
  • 财政年份:
    2021
  • 资助金额:
    $ 66.5万
  • 项目类别:
    Standard Grant
Collaborative Research: OP: Transition Metal Alloys: Emergent Properties for Near-Infrared Hot-Carrier Optoelectronics
合作研究:OP:过渡金属合金:近红外热载流子光电器件的新兴特性
  • 批准号:
    2114304
  • 财政年份:
    2021
  • 资助金额:
    $ 66.5万
  • 项目类别:
    Standard Grant
CAREER: OP: Ultraviolet Superchiral Light-Matter Interactions: Plasmonic Devices for Enhanced Structural Biology Characterization
职业:OP:紫外超手性光-物质相互作用:用于增强结构生物学表征的等离子体装置
  • 批准号:
    1653705
  • 财政年份:
    2017
  • 资助金额:
    $ 66.5万
  • 项目类别:
    Standard Grant

相似国自然基金

脚手架蛋白RanBP9通过调控细胞周期停滞和获得SASP介导应激性衰老促进AKI向CKD转化的作用及机制
  • 批准号:
    82300777
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
氨基酸转运体SLC7A5诱导食管癌免疫治疗获得性耐药的机制研究
  • 批准号:
    82373410
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
Galectin-9促进非小细胞肺癌奥希替尼获得性耐药及免疫逃逸的作用和机制研究
  • 批准号:
    82373361
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
靶向谷氨酰胺转运体ASCT2逆转食管鳞癌对CDK4/6抑制剂获得性耐药分子机制研究
  • 批准号:
    82373360
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
FOXK2-KCNJ2轴在阿帕替尼获得性耐药的甲状腺未分化癌中重塑细胞焦亡微环境的机制研究
  • 批准号:
    82303864
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Characterization of the Neurobiological Profiles of Young Adults with and without Developmental Language Disorder (DLD)
患有和不患有发育性语言障碍 (DLD) 的年轻人的神经生物学特征的表征
  • 批准号:
    10721464
  • 财政年份:
    2023
  • 资助金额:
    $ 66.5万
  • 项目类别:
A fast CTOT for mapping whole brain hemodynamic activity in infants
用于绘制婴儿全脑血流动力学活动的快速 CTOT
  • 批准号:
    10591932
  • 财政年份:
    2023
  • 资助金额:
    $ 66.5万
  • 项目类别:
Robust, Contrast-Free Functional Renal MRI
稳健、无对比的功能性肾脏 MRI
  • 批准号:
    10578551
  • 财政年份:
    2023
  • 资助金额:
    $ 66.5万
  • 项目类别:
Illuminating brain function during imitation in children with ASD with DOT
DOT 揭示自闭症儿童模仿过程中的大脑功能
  • 批准号:
    10591602
  • 财政年份:
    2022
  • 资助金额:
    $ 66.5万
  • 项目类别:
MRI: Acquisition of a Scanning Near-Field Optical Microscope (neaSNOM) with Combined Nano-Infrared/Tip-Enhanced Raman Spectroscopy for Research & Education
MRI:购买扫描近场光学显微镜 (neaSNOM) 并结合纳米红外/尖端增强拉曼光谱进行研究
  • 批准号:
    2216239
  • 财政年份:
    2022
  • 资助金额:
    $ 66.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了