CC* Compute: High-Memory Compute Resources for Maine
CC* 计算:缅因州的高内存计算资源
基本信息
- 批准号:2018851
- 负责人:
- 金额:$ 39.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Maine researchers are advancing the state of the art in areas including landslide prediction, hydrodynamic modelling, fluid-structure interaction and modelling the electro-chemical properties of organic molecules. Strong, scientifically compelling investigations have previously been hampered or stalled by the lack of adequate computational resources. This project advances research at the University of Maine in two ways through the addition of approximately 1000 processing cores in high RAM nodes along with a growth in CEPH disk storage. It enables research to move forward in areas such as landslide prediction, coastal modelling, DNA sequencing from single strands of DNA, and high resolution modeling of the cardiovascular system. It facilitates an increase in collaboration with the Eastern Regional Network, the Open Science Grid, the Open Storage Network, and with other institutions, particularly other EPSCoR sites in the Northeast. Data and code from this grant is disseminated to the public through tools such as github and EarthCube. The increase in computational resources as a result of this project allows opportunities for undergraduate and graduate students to engage in state-of-the-art numerical modeling. By having these new resources to meet the needs of researchers, previously existing resources are utilized to offer courses for which there was not previously the capacity. Thus the instrumentation advances research and also enables the project team to better train the next generation of scientists and engineers. The research projects facilitated by this cluster all include plans to distribute, and visualize model output for relevant stakeholders.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
缅因州的研究人员正在推进滑坡预测、流体动力学建模、流体-结构相互作用和有机分子电化学特性建模等领域的最新技术。此前,由于缺乏足够的计算资源,强有力的、具有科学说服力的研究受到阻碍或停滞。该项目通过在高 RAM 节点中添加大约 1000 个处理核心以及增加 CEPH 磁盘存储,以两种方式推进缅因大学的研究。它使滑坡预测、海岸建模、单链 DNA 测序以及心血管系统高分辨率建模等领域的研究取得进展。它促进了与东部区域网络、开放科学网格、开放存储网络以及其他机构(特别是东北部其他 EPSCoR 站点)的合作。这笔资助的数据和代码通过 github 和 EarthCube 等工具向公众传播。该项目带来的计算资源的增加为本科生和研究生提供了参与最先进的数值建模的机会。通过使用这些新资源来满足研究人员的需求,以前现有的资源可以用来提供以前没有能力的课程。因此,仪器可以推进研究,并使项目团队能够更好地培训下一代科学家和工程师。该集群推动的研究项目都包括为相关利益相关者分发和可视化模型输出的计划。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The impact of oyster aquaculture on the estuarine carbonate system
牡蛎养殖对河口碳酸盐系统的影响
- DOI:10.1525/elementa.2020.00057
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Liberti, Catherine M.;Gray, Matthew W.;Mayer, Lawrence M.;Testa, Jeremy M.;Liu, Wei;Brady, Damian C.
- 通讯作者:Brady, Damian C.
Nonlinear elastic analysis of 2D materials of arbitrary symmetries with application to black phosphorus
- DOI:10.1016/j.mechmat.2021.104159
- 发表时间:2021-12
- 期刊:
- 影响因子:3.9
- 作者:Serge R. Maalouf;S. Vel
- 通讯作者:Serge R. Maalouf;S. Vel
Recipes for the Derivation of Water Quality Parameters Using the High-Spatial-Resolution Data from Sensors on Board Sentinel-2A, Sentinel-2B, Landsat-5, Landsat-7, Landsat-8, and Landsat-9 Satellites
使用 Sentinel-2A、Sentinel-2B、Landsat-5、Landsat-7、Landsat-8 和 Landsat-9 卫星上传感器的高分辨率数据推导水质参数的方法
- DOI:10.34133/remotesensing.0049
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Tavora, Juliana;Jiang, Binbin;Kiffney, Thomas;Bourdin, Guillaume;Gray, Patrick Clifton;Carvalho, Lino Sander;Hesketh, Gabriel;Schild, Kristin M.;Souza, Luiz Faria;Brady, Damian C.
- 通讯作者:Brady, Damian C.
Oyster Aquaculture Site Selection Using High-Resolution Remote Sensing: A Case Study in the Gulf of Maine, United States
利用高分辨率遥感选择牡蛎养殖地点:美国缅因湾案例研究
- DOI:10.3389/fmars.2022.802438
- 发表时间:2022
- 期刊:
- 影响因子:3.7
- 作者:Jiang, Binbin;Boss, Emmanuel;Kiffney, Thomas;Hesketh, Gabriel;Bourdin, Guillaume;Fan, Daidu;Brady, Damian C.
- 通讯作者:Brady, Damian C.
Mooring tension assessment of a single line kelp farm with quantified biomass, waves, and currents
- DOI:10.3389/fmars.2023.1178548
- 发表时间:2023-05
- 期刊:
- 影响因子:0
- 作者:D. Fredriksson;Adam T. St. Gelais;T. Dewhurst;Struan Coleman;D. Brady;B. Costa‐Pierce
- 通讯作者:D. Fredriksson;Adam T. St. Gelais;T. Dewhurst;Struan Coleman;D. Brady;B. Costa‐Pierce
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen Cousins其他文献
Stephen Cousins的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
面向类脑计算的共生记忆元件仿生机制研究
- 批准号:62301395
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
记忆重构和图式形成的神经与计算机制
- 批准号:32330039
- 批准年份:2023
- 资助金额:216 万元
- 项目类别:重点项目
熊蜂多属性选项比较记忆的编码过程及其计算机制研究
- 批准号:32371135
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
视觉感知、记忆和注意的归一化计算机制
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
工作记忆的操纵单元研究:认知机制、神经基础与计算模型
- 批准号:32271103
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
SHF: Small: Redesigning the Memory System in the Era of Compute Express Link
SHF:小型:重新设计 Compute Express Link 时代的内存系统
- 批准号:
2333049 - 财政年份:2024
- 资助金额:
$ 39.98万 - 项目类别:
Standard Grant
CAREER: Reinventing Computer Vision through Bio-inspired Retinomorphic Vision Sensors, Corticomorphic Compute-In-Memory Processors and Event-based Algorithms
职业:通过仿生视网膜形态视觉传感器、皮质形态内存计算处理器和基于事件的算法重塑计算机视觉
- 批准号:
2338171 - 财政年份:2024
- 资助金额:
$ 39.98万 - 项目类别:
Continuing Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
- 批准号:
2312886 - 财政年份:2023
- 资助金额:
$ 39.98万 - 项目类别:
Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
- 批准号:
2312884 - 财政年份:2023
- 资助金额:
$ 39.98万 - 项目类别:
Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
- 批准号:
2344819 - 财政年份:2023
- 资助金额:
$ 39.98万 - 项目类别:
Standard Grant