Collaborative Research: CNS Core: Medium: Learning to Cache and Caching to Learn in High Performance Caching Systems

合作研究:CNS 核心:中:学习缓存以及在高性能缓存系统中学习缓存

基本信息

项目摘要

Caching is fundamental to cloud computing and content distribution, and is important to the vast number of applications and services they support. Crucial performance metrics of a caching algorithm are its ability to quickly and accurately learn a changing popularity distribution. However, there is a serious disconnect between empirical studies using real-world traces that account for popularity changes, and analytical performance analysis results that assume a fixed popularity. A basic goal of this project is to develop a methodology based on online learning and reinforcement learning for caching algorithm design with provable performance guarantees. This enables the systematic design of caching algorithms that can be tailored to a variety of application contexts. The use-case of these algorithms is in high performance caching networks that support large-scale cloud applications and services. Emulation of high-performance caching systems to leverage and to empirically evaluate the online learning algorithms developed supports this goal, and provides a real-world context for the methodology developed. The results will also enhance the performance of content distribution platforms. At the same time the project develops fundamental theories that pertain to the area of machine learning, specifically to online learning. This project aims at optimally utilizing locally available memory and computing resources of caches, while ensuring provably good performance via fast and accurate learning of content popularity. This requires the conjunction of several mathematical tools to analyze online learning algorithms, as well as strong systems development skills to make the algorithms a reality. The project addresses these key challenges in two main themes. The first theme focuses on systematic design of distributed online learning in networks of caches using collaborative filtering for distributed identification of popular content, and multi-agent reinforcement learning for joint learning and content placement. The second theme focuses on building high performing caching systems using the algorithms developed in the first theme, and quantifying the impacts of the algorithms on real-world applications such as Hipster Shop, an open-source e-commerce website, and Spark data-analytics job pipelines. The immediate impact of this project is in creating high performance caching schemes that apply to cloud computing and content distribution networks. This project also advances the fundamental theory of online learning. The project includes an education plan focusing on machine learning and caching, and outreach in the form of summer camps and seminars for high school students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
缓存是云计算和内容分发的基础,对于它们支持的大量应用程序和服务也很重要。 缓存算法的关键性能指标是其快速准确地学习不断变化的流行度分布的能力。然而,使用现实世界痕迹来解释流行度变化的实证研究与假设流行度固定的分析性能分析结果之间存在严重脱节。 该项目的基本目标是开发一种基于在线学习和强化学习的方法,用于具有可证明的性能保证的缓存算法设计。 这使得缓存算法的系统设计能够适应各种应用程序环境。这些算法的用例是支持大规模云应用程序和服务的高性能缓存网络。 模拟高性能缓存系统以利用和实证评估所开发的在线学习算法支持这一目标,并为所开发的方法提供真实世界的背景。 结果还将提高内容分发平台的性能。 与此同时,该项目开发了与机器学习领域(特别是在线学习)相关的基础理论。该项目旨在最佳地利用本地可用的内存和缓存的计算资源,同时通过快速准确地了解内容流行度来确保可证明的良好性能。这需要结合多种数学工具来分析在线学习算法,以及强大的系统开发技能来使算法成为现实。该项目通过两个主题解决这些关键挑战。第一个主题侧重于缓存网络中分布式在线学习的系统设计,使用协作过滤来分布式识别流行内容,以及用于联合学习和内容放置的多智能体强化学习。第二个主题侧重于使用第一个主题中开发的算法构建高性能缓存系统,并量化算法对现实应用程序(例如 Hipster Shop、开源电子商务网站和 Spark 数据分析)的影响作业管道。该项目的直接影响是创建适用于云计算和内容分发网络的高性能缓存方案。该项目还推进了在线学习的基础理论。该项目包括一项专注于机器学习和缓存的教育计划,以及针对高中生的夏令营和研讨会形式的推广。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的评估进行评估,被认为值得支持。影响审查标准。

项目成果

期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Rarest-First with Probabilistic-Mode-Suppression (RFwPMS)
具有概率模式抑制的稀有优先 (RFwPMS)
Bayesian Persuasion in Sequential Trials
序贯试验中的贝叶斯说服
Learning-Based Optimal Admission Control in a Single-Server Queuing System
单服务器排队系统中基于学习的最优准入控制
  • DOI:
  • 发表时间:
    2023-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Asaf Cohen;Vijay Subramanian;Yili Zhang
  • 通讯作者:
    Yili Zhang
A Strong Duality Result for Cooperative Decentralized Constrained POMDPs
合作分散约束 POMDP 的强对偶结果
Bayesian Learning of Optimal Policies in Markov Decision Processes with Countably Infinite State-Space
可数无限状态空间马尔可夫决策过程中最优策略的贝叶斯学习
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vijay Subramanian其他文献

A Multi-Agent View of Wireless Video Streaming with Delayed Client-Feedback
具有延迟客户端反馈的无线视频流的多代理视图
Bayesian Learning of Optimal Policies in Markov Decision Processes with Countably Infinite State-Space
可数无限状态空间马尔可夫决策过程中最优策略的贝叶斯学习
A Multi-Agent View of Wireless Video Streaming with Delayed Client-Feedback
具有延迟客户端反馈的无线视频流的多代理视图
A Multi-Agent View of Wireless Video Streaming with Delayed Client-Feedback
具有延迟客户端反馈的无线视频流的多代理视图
Learning-Based Optimal Admission Control in a Single-Server Queuing System
单服务器排队系统中基于学习的最优准入控制
  • DOI:
  • 发表时间:
    2023-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Asaf Cohen;Vijay Subramanian;Yili Zhang
  • 通讯作者:
    Yili Zhang

Vijay Subramanian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vijay Subramanian', 18)}}的其他基金

CPS: Medium: Collaborative Research: Developing Data-driven Robustness and Safety from Single Agent Settings to Stochastic Dynamic Teams: Theory and Applications
CPS:中:协作研究:从单代理设置到随机动态团队开发数据驱动的鲁棒性和安全性:理论与应用
  • 批准号:
    2240981
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CIF: AF: Small: A Perturbed Markov Chains Approach to Studying Centrality, Mixing and Reinforcement Learning
CIF:AF:小:研究中心性、混合和强化学习的扰动马尔可夫链方法
  • 批准号:
    2008130
  • 财政年份:
    2020
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Empowering prosumers in electricity markets through market design and learning
合作研究:CPS:中:通过市场设计和学习为电力市场中的产消者赋权
  • 批准号:
    2038416
  • 财政年份:
    2020
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
The 6th Midwest Workshop on Control and Game Theory; Ann Arbor, Michigan
第六届中西部控制与博弈论研讨会;
  • 批准号:
    1738207
  • 财政年份:
    2017
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: EARS: Creating an Ecosystem for Enhanced Spectrum Utilization Through Dynamic Market Mechanisms
合作研究:EARS:通过动态市场机制创建增强频谱利用率的生态系统
  • 批准号:
    1516075
  • 财政年份:
    2014
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
III: Small: Inferring first movers in large-scale socio-technical networks
III:小型:推断大规模社会技术网络中的先行者
  • 批准号:
    1538827
  • 财政年份:
    2014
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: EARS: Creating an Ecosystem for Enhanced Spectrum Utilization Through Dynamic Market Mechanisms
合作研究:EARS:通过动态市场机制创建增强频谱利用率的生态系统
  • 批准号:
    1443972
  • 财政年份:
    2014
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: EARS: Creating an Ecosystem for Enhanced Spectrum Utilization Through Dynamic Market Mechanisms
合作研究:EARS:通过动态市场机制创建增强频谱利用率的生态系统
  • 批准号:
    1516075
  • 财政年份:
    2014
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
III: Small: Inferring first movers in large-scale socio-technical networks
III:小型:推断大规模社会技术网络中的先行者
  • 批准号:
    1219071
  • 财政年份:
    2012
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant

相似国自然基金

LncMOB3A-2编码多肽在肠外致病性大肠杆菌入侵中枢神经系统中的作用机制研究
  • 批准号:
    32302954
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
S100A9作为万古霉素儿童中枢神经系统抗感染个体化治疗预测因子的机制研究和量效分析
  • 批准号:
    82304631
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
失重效应影响中枢神经系统药物脑空间分布及药动学的机制和调控研究
  • 批准号:
    82373939
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
染色质重塑因子CHD3调控中枢神经系统少突胶质细胞发育的机制研究
  • 批准号:
    82301950
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于人体镜像中枢神经系统和信任度的假肢互适应机制研究
  • 批准号:
    62363006
  • 批准年份:
    2023
  • 资助金额:
    31 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Collaborative Research: CISE-MSI: RCBP-RF: CNS: ESD4CDaT - Efficient System Design for Cancer Detection and Treatment
合作研究:CISE-MSI:RCBP-RF:CNS:ESD4CDaT - 癌症检测和治疗的高效系统设计
  • 批准号:
    2318573
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Accelerating Serverless Cloud Network Performance
协作研究:CNS 核心:小型:加速无服务器云网络性能
  • 批准号:
    2229454
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Center of Biomedical Research Excellence in CNS Metabolism
中枢神经系统代谢生物医学卓越研究中心
  • 批准号:
    10557542
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
  • 批准号:
    2230945
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Movement of Computation and Data in Splitkernel-disaggregated, Data-intensive Systems
合作研究:CNS 核心:媒介:Splitkernel 分解的数据密集型系统中的计算和数据移动
  • 批准号:
    2406598
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了