Collaborative Research: CNS Core: Medium: Cross-Layer Design of Video Analytics for the Internet of Things
合作研究:CNS 核心:媒介:物联网视频分析的跨层设计
基本信息
- 批准号:1955487
- 负责人:
- 金额:$ 37.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The emergence of the Internet of Things (IoT) enables many new applications ranging from augmented reality and self-driving cars, to surveillance and cashier-less retail stores. These applications continuously collect video streams from IoT devices, such as sensors, cameras, and radars. They aim to understand the video content to make intelligent decisions, by running sophisticated video analytics tasks, such as counting people and recognizing license plates in the video streams. These video analytics tasks often run a collection of computing resources including IoT devices, edge clusters near the devices and the remote cloud, connected through networks with dynamic bandwidth and latency. This project will enable a high-performance video analytics framework that can support a variety of IoT applications in real-time, with high accuracy, and at scale. The key idea of this project is to enable video analytics for IoT devices by joint optimizations across application, computing, and networking. Today’s solutions often focus on separated optimization, which leads to inaccurate answers to analytical queries, inefficient use of computing resources, and performance degrades when network condition changes. This project's video analytics framework will (1) leverage both network layer information and physical information to tune the parameters in video analytics, in order to optimize task accuracy, instead of network bandwidth, latency or quality of experience, (2) allocate computing resources for analytics tasks to meet multi-dimensional task-level service-level objectives with distributed time tracking and runtime scheduling, and (3) redesign video analytics and encoding algorithms by considering the network and computing constraints. This project will build and test representative video analytics applications on top of the system to demonstrate its capability. The project will facilitate the interactions between the machine learning research community and the systems/networking research community, and result in novel algorithms and efficient networked systems for video analytics. The project will also engage underrepresented groups and undergraduates in research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
物联网 (IoT) 的出现催生了许多新应用,从增强现实和自动驾驶汽车到监控和无收银员零售店,这些应用不断从物联网设备(例如传感器、摄像头和摄像头)收集视频流。他们的目标是通过运行复杂的视频分析任务(例如统计人数和识别视频流中的车牌)来了解视频内容,从而做出明智的决策。这些视频分析任务通常运行一系列计算资源,包括物联网设备、边缘设备。靠近设备和远程云的集群,通过网络连接该项目将实现高性能视频分析框架,该框架可以实时、高精度、大规模地支持各种物联网应用。该项目的关键思想是支持视频。通过跨应用程序、计算和网络的联合优化来对物联网设备进行分析。当今的解决方案通常侧重于单独的优化,这会导致分析查询的答案不准确、计算资源的使用效率低下,并且当网络条件发生变化时,性能会下降。框架将(1)利用网络层信息和物理信息调整视频分析中的参数,以优化任务准确性,而不是网络带宽、延迟或体验质量,(2) 为分析任务分配计算资源,以满足分布式时间的多维任务级服务级别目标跟踪和运行时调度,以及(3)考虑网络和计算限制重新设计视频分析和编码算法。该项目将在系统之上构建和测试代表性视频分析应用程序,以展示其功能。机器学习研究社区和系统/网络研究社区,以及该项目还将吸引代表性不足的群体和本科生参与研究。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yinzhi Cao其他文献
WavCraft: Audio Editing and Generation with Large Language Models
WavCraft:使用大型语言模型进行音频编辑和生成
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Jinhua Liang;Huan Zhang;Haohe Liu;Yinzhi Cao;Qiuqiang Kong;Xubo Liu;Wenwu Wang;M. Plumbley;Huy Phan;Emmanouil Benetos - 通讯作者:
Emmanouil Benetos
JShield: towards real-time and vulnerability-based detection of polluted drive-by download attacks
JShield:针对受污染的偷渡式下载攻击进行实时和基于漏洞的检测
- DOI:
10.1145/2664243.2664256 - 发表时间:
2014-12-08 - 期刊:
- 影响因子:0
- 作者:
Yinzhi Cao;Xiang Pan;Yan Chen;Jianwei Zhuge - 通讯作者:
Jianwei Zhuge
I Do Not Know What You Visited Last Summer: Protecting users from stateful third-party web tracking with TrackingFree browser
我不知道您去年夏天访问了什么:使用 TrackingFree 浏览器保护用户免受有状态的第三方网络跟踪
- DOI:
10.14722/ndss.2015.23163 - 发表时间:
2024-09-13 - 期刊:
- 影响因子:5.8
- 作者:
Xiang Pan;Yinzhi Cao;Yan Chen - 通讯作者:
Yan Chen
Defending Medical Image Diagnostics against Privacy Attacks using Generative Methods
使用生成方法保护医学图像诊断免受隐私攻击
- DOI:
10.1007/978-3-030-90874-4_17 - 发表时间:
2021-03-04 - 期刊:
- 影响因子:0
- 作者:
W. Paul;Yinzhi Cao;Miaomiao Zhang;P. Burlina - 通讯作者:
P. Burlina
Identity Confusion in WebView-based Mobile App-in-app Ecosystems
基于 WebView 的移动应用内应用生态系统中的身份混乱
- DOI:
10.1109/bigdata50022.2020.9377952 - 发表时间:
2024-09-14 - 期刊:
- 影响因子:0
- 作者:
Lei Zhang;Zhibo Zhang;Ancong Liu;Yinzhi Cao;Xiaohan Zhang;Yanjun Chen;Yuan Zhang;Guangliang Yang;Min Yang - 通讯作者:
Min Yang
Yinzhi Cao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yinzhi Cao', 18)}}的其他基金
CICI: TCR: Transitioning Differentially Private Federated Learning to Enable Collaborative, Intelligent, Fair Skin Disease Diagnostics on Medical Imaging Cyberinfrastructure
CICI:TCR:转变差异化私有联合学习,以实现医学影像网络基础设施上的协作、智能、公平的皮肤病诊断
- 批准号:
2319742 - 财政年份:2024
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Collaborative Research: DASS: Assessing the Relationship Between Privacy Regulations and Software Development to Improve Rulemaking and Compliance
合作研究:DASS:评估隐私法规与软件开发之间的关系以改进规则制定和合规性
- 批准号:
2317185 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Studying and Measuring the Consequence of Prototype Pollution Vulnerabilities Automatically via Joint Taintflow Analysis
SaTC:核心:小型:通过联合污染流分析自动研究和测量原型污染漏洞的后果
- 批准号:
2154404 - 财政年份:2022
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
CAREER: Mining and Exploiting Web Vulnerabilities of Prototype-based Programming Languages via Object Property Graph
职业:通过对象属性图挖掘和利用基于原型的编程语言的 Web 漏洞
- 批准号:
2046361 - 财政年份:2021
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
CNS Core: Small: Lease-based, Utilitarian Mobile System Design to Enable Energy-Efficient Apps
CNS 核心:小型:基于租赁的实用移动系统设计,支持节能应用
- 批准号:
1910133 - 财政年份:2019
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
TWC: Medium: Collaborative: Efficient Repair of Learning Systems via Machine Unlearning
TWC:媒介:协作:通过机器取消学习有效修复学习系统
- 批准号:
1854000 - 财政年份:2018
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Preventing Web Side-channel Attacks via Atomic Determinism
SaTC:核心:小:通过原子决定论防止 Web 侧信道攻击
- 批准号:
1812870 - 财政年份:2018
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Preventing Web Side-channel Attacks via Atomic Determinism
SaTC:核心:小:通过原子决定论防止 Web 侧信道攻击
- 批准号:
1854001 - 财政年份:2018
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
TWC: Medium: Collaborative: Efficient Repair of Learning Systems via Machine Unlearning
TWC:媒介:协作:通过机器取消学习有效修复学习系统
- 批准号:
1563843 - 财政年份:2016
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
EAGER: Real-time Enforcement of Content Security Policy upon Real-world Websites
EAGER:在真实网站上实时执行内容安全策略
- 批准号:
1646662 - 财政年份:2016
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
相似国自然基金
失重效应影响中枢神经系统药物脑空间分布及药动学的机制和调控研究
- 批准号:82373939
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
LncMOB3A-2编码多肽在肠外致病性大肠杆菌入侵中枢神经系统中的作用机制研究
- 批准号:32302954
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
S100A9作为万古霉素儿童中枢神经系统抗感染个体化治疗预测因子的机制研究和量效分析
- 批准号:82304631
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
染色质重塑因子CHD3调控中枢神经系统少突胶质细胞发育的机制研究
- 批准号:82301950
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于人体镜像中枢神经系统和信任度的假肢互适应机制研究
- 批准号:62363006
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
相似海外基金
Collaborative Research: CNS Core: Small: Accelerating Serverless Cloud Network Performance
协作研究:CNS 核心:小型:加速无服务器云网络性能
- 批准号:
2229454 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Collaborative Research: CISE-MSI: RCBP-RF: CNS: ESD4CDaT - Efficient System Design for Cancer Detection and Treatment
合作研究:CISE-MSI:RCBP-RF:CNS:ESD4CDaT - 癌症检测和治疗的高效系统设计
- 批准号:
2318573 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Center of Biomedical Research Excellence in CNS Metabolism
中枢神经系统代谢生物医学卓越研究中心
- 批准号:
10557542 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2230945 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
- 批准号:
2343863 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant