Collaborative Research: SaTC: CORE: Medium: Threat Intelligence for Targets of Coordinated Harassment

协作研究:SaTC:核心:中:协调骚扰目标的威胁情报

基本信息

  • 批准号:
    2016061
  • 负责人:
  • 金额:
    $ 80.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

Coordinated online harassment by collections of individuals and groups is a scourge of the modern Internet. It has upended and cost lives, silenced voices, and is making our public discourse more cruel and less representative. The phenomenon creates challenges for those who seek an equitable, secure and trustworthy internet to reduce the threat of coordinated attacks and handle attacks swiftly and effectively. Using the research team's past experiences with a clinical model that has been useful in helping victims of intimate partner violence, and new understandings of how to handle coordinated harassment to reduce harms and provide active assistance to targets of harassment, this project pilots an advice clinic. To ensure that the work has practical, real world impact, the project is also developing materials and working with platforms, threat intelligence companies, and non-profit organizations that help targets of online harassment .The project uses a comprehensive set of technical and human-centered methods to advance our understanding of coordinated harassment threats and mitigation techniques. The coordination of harassment allows harassers to scale their attacks, but also provides defenders with an opportunity to monitor attackers. This project will study how threat intelligence---an emerging area of cybersecurity that has enabled the blocking, detecting, and remediation of cyberattacks---can be used to monitor channels where coordinated harassment and doxing campaigns happen, understand escalation processes, identify pain points, and prioritize courses of action for platforms, law enforcement, and targeted individuals. The multidisciplinary team and mixed methods approach will enable the project to not only build sophisticated tools, but also build scientific knowledge in multiple fields and to understand whether and how the proposed tools can contribute solutions to a complex societal problem.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
由个人和团体的集合协调的在线骚扰是现代互联网的祸害。它颠覆了生命,付出了沉默的声音,使我们的公共话语更加残酷和代表性更低。这种现象给那些寻求公平,安全和可信赖的互联网以迅速有效地处理攻击的威胁的人带来了挑战。利用研究团队的过去经验,该模型可用于帮助亲密伴侣暴力的受害者,以及对如何处理如何处理协调骚扰以减少危害并为骚扰目标提供积极帮助的新理解,该项目飞行员咨询诊所。为了确保工作具有实用的现实世界影响,该项目还正在开发材料,并与平台,威胁情报公司和非营利组织合作,这些组织有助于针对在线骚扰的目标。该项目采用了一系列以技术和人为中心的方法来促进我们对协调的骚扰威胁和缓解技术的理解。骚扰的协调使骚扰者可以扩大其攻击,但也为防守者提供了监视攻击者的机会。该项目将研究威胁智能如何 - 可以使用网络安全领域的新兴领域,该领域能够阻止,检测和修复网络攻击 - 可用于监视频道进行协调的骚扰和挑剔运动的发生,了解升级过程,了解升级过程,识别痛苦点,并确定痛苦点并优先考虑平台,执法,执法,以及执法,以及律法,和目标,以及目标,以及目标,以及目标。多学科团队和混合方法方法将使项目不仅能够建立复杂的工具,而且还可以在多个领域建立科学知识,并了解拟议工具是否以及如何为复杂的社会问题贡献解决方案。该奖项反映了NSF的法定任务,并认为通过基金会的知识优点和广泛的crietia来评估,并被认为是值得通过评估来支持的。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Can Deepfakes be created on a whim?
  • DOI:
    10.1145/3543873.3587581
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pulak Mehta;Gauri Jagatap;Kevin Gallagher;Brian Timmerman;Progga Deb;S. Garg;R. Greenstadt;Brendan Dolan-Gavitt
  • 通讯作者:
    Pulak Mehta;Gauri Jagatap;Kevin Gallagher;Brian Timmerman;Progga Deb;S. Garg;R. Greenstadt;Brendan Dolan-Gavitt
A large-scale characterization of online incitements to harassment across platforms
  • DOI:
    10.1145/3487552.3487852
  • 发表时间:
    2021-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Aliapoulios;Kejsi Take;Prashanth Ramakrishna;Daniel Borkan;B. Goldberg;Jeffrey Scott Sorensen;Anna Turner;R. Greenstadt;Tobias Lauinger;Damon McCoy
  • 通讯作者:
    M. Aliapoulios;Kejsi Take;Prashanth Ramakrishna;Daniel Borkan;B. Goldberg;Jeffrey Scott Sorensen;Anna Turner;R. Greenstadt;Tobias Lauinger;Damon McCoy
"I'm a Professor, which isn't usually a dangerous job": Internet-facilitated Harassment and Its Impact on Researchers
“我是一名教授,这通常不是一项危险的工作”:互联网引发的骚扰及其对研究人员的影响
  • DOI:
    10.1145/3476082
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Doerfler, Periwinkle;Forte, Andrea;De Cristofaro, Emiliano;Stringhini, Gianluca;Blackburn, Jeremy;McCoy, Damon
  • 通讯作者:
    McCoy, Damon
“It Feels Like Whack-a-mole”: User Experiences of Data Removal from People Search Websites
“感觉就像打地鼠”:从人物搜索网站删除数据的用户体验
  • DOI:
    10.56553/popets-2022-0067
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Take, Kejsi;Gallagher, Kevin;Forte, Andrea;McCoy, Damon;Greenstadt, Rachel
  • 通讯作者:
    Greenstadt, Rachel
Disability Activism on Social Media: Sociotechnical Challenges in the Pursuit of Visibility
社交媒体上的残疾人行动主义:追求可见性的社会技术挑战
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rachel Greenstadt其他文献

Challenges in Restructuring Community-based Moderation
重组基于社区的审核面临的挑战
  • DOI:
    10.48550/arxiv.2402.17880
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chau Tran;Kejsi Take;Kaylea Champion;Benjamin Mako Hill;Rachel Greenstadt
  • 通讯作者:
    Rachel Greenstadt
From User Insights to Actionable Metrics: A User-Focused Evaluation of Privacy-Preserving Browser Extensions
从用户洞察到可操作的指标:以用户为中心的隐私保护浏览器扩展评估
Stoking the Flames: Understanding Escalation in an Online Harassment Community
煽风点火:了解在线骚扰社区的升级
Feature Vector Difference based Authorship Verification for Open-World Settings
开放世界设置中基于特征向量差异的作者身份验证
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Janith Weerasinghe;Rhia Singh;Rachel Greenstadt
  • 通讯作者:
    Rachel Greenstadt

Rachel Greenstadt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rachel Greenstadt', 18)}}的其他基金

NSF-NSERC: SaTC: CORE: Small: Managing Risks of AI-generated Code in the Software Supply Chain
NSF-NSERC:SaTC:核心:小型:管理软件供应链中人工智能生成代码的风险
  • 批准号:
    2341206
  • 财政年份:
    2024
  • 资助金额:
    $ 80.8万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: 2023 Workshop for Aspiring PIs in Secure and Trusted Cyberspace
协作研究:会议:2023 年安全可信网络空间中有抱负的 PI 研讨会
  • 批准号:
    2247405
  • 财政年份:
    2023
  • 资助金额:
    $ 80.8万
  • 项目类别:
    Standard Grant
SaTC: CORE: Medium: Collaborative: Measuring the Value of Anonymous Online Participation
SaTC:核心:媒介:协作:衡量匿名在线参与的价值
  • 批准号:
    2031951
  • 财政年份:
    2019
  • 资助金额:
    $ 80.8万
  • 项目类别:
    Continuing Grant
SaTC: CORE: Small: Collaborative: Understanding and Mitigating Adversarial Manipulation of Content Curation Algorithms
SaTC:核心:小型:协作:理解和减轻内容管理算法的对抗性操纵
  • 批准号:
    1931005
  • 财政年份:
    2019
  • 资助金额:
    $ 80.8万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: Collaborative: Understanding and Mitigating Adversarial Manipulation of Content Curation Algorithms
SaTC:核心:小型:协作:理解和减轻内容管理算法的对抗性操纵
  • 批准号:
    1813697
  • 财政年份:
    2018
  • 资助金额:
    $ 80.8万
  • 项目类别:
    Standard Grant
SaTC: CORE: Medium: Collaborative: Measuring the Value of Anonymous Online Participation
SaTC:核心:媒介:协作:衡量匿名在线参与的价值
  • 批准号:
    1703736
  • 财政年份:
    2017
  • 资助金额:
    $ 80.8万
  • 项目类别:
    Continuing Grant
Student Travel Support: Privacy Enhancing Technology Symposium (PETS) 2015
学生旅行支持:隐私增强技术研讨会 (PETS) 2015
  • 批准号:
    1523108
  • 财政年份:
    2015
  • 资助金额:
    $ 80.8万
  • 项目类别:
    Standard Grant
EAGER: Cybercrime Science
EAGER:网络犯罪科学
  • 批准号:
    1347151
  • 财政年份:
    2013
  • 资助金额:
    $ 80.8万
  • 项目类别:
    Standard Grant
CAREER: Privacy Analytics for Users in a Big Data World
职业:大数据世界中用户的隐私分析
  • 批准号:
    1253418
  • 财政年份:
    2013
  • 资助金额:
    $ 80.8万
  • 项目类别:
    Continuing Grant
EAGER: Investigating Diversity in Online Community Filtering
EAGER:调查在线社区过滤的多样性
  • 批准号:
    1048515
  • 财政年份:
    2010
  • 资助金额:
    $ 80.8万
  • 项目类别:
    Standard Grant

相似国自然基金

支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
  • 批准号:
    62371263
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
腙的Heck/脱氮气重排串联反应研究
  • 批准号:
    22301211
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
  • 批准号:
    52364038
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
  • 批准号:
    82371176
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
  • 批准号:
    82305286
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317232
  • 财政年份:
    2024
  • 资助金额:
    $ 80.8万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330940
  • 财政年份:
    2024
  • 资助金额:
    $ 80.8万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338301
  • 财政年份:
    2024
  • 资助金额:
    $ 80.8万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317233
  • 财政年份:
    2024
  • 资助金额:
    $ 80.8万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338302
  • 财政年份:
    2024
  • 资助金额:
    $ 80.8万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了