Modeling and Analysis of Fluid-structure Interaction in Biomimetic Undulatory Swimming

仿生波动游泳中流固耦合的建模与分析

基本信息

  • 批准号:
    2015194
  • 负责人:
  • 金额:
    $ 49.09万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

This grant will support fundamental research in aquatic propulsion mechanisms. This study will benefit science and engineering fields such as exploration, transportation, and defense, by boosting the development of bio-inspired locomotion based on the fundamental principles that make fish-swimming highly efficient and agile. Accurate modeling of the interplay between a flexible body and the surrounding fluid is crucial to understanding and optimizing energy consumption, speed, and maneuverability. Existing models of undulatory swimming are restrictive in the forms of motion and the flow conditions they can describe accurately. This study will help to overcome those restrictions by introducing more realistic body motion and flow conditions. A novel body-fin dynamical model will be developed that includes previously ignored key elements important for swimming performance. This research combines vibration theory, fluid and solid mechanics, and both numerical and experimental analyses, offering interdisciplinary research for graduate and undergraduate students, as well as creative activities for K-12 outreach including fish-design competitions.Undulatory swimming is a result of the nonlinear interaction between the body and surrounding fluid. Subtle changes in internal forcing and body deformation may induce significant differences in swimming performance. This award supports research that will address the fundamental challenges of accurate fluid-structure modeling under variable body-fin configurations with diverse swim gaits and conditions. A reduced-order model of undulatory swimming motion of a slender body as a forced hydroelastic oscillator will be developed to connect internal muscle forcing, external fluid forces, and body motion in an efficient approach based on state-variable modal analysis. Nonholonomic constraints on fins will be used to bypass the fluid-force prediction based on classical hydrodynamic models, which are restricted to idealized geometry and flow conditions. The use of nonsynchronous modes will enable the description of general body waves with longitudinally-varying properties. High-fidelity computational fluid-structure simulations, and innovative water-tunnel measurements based on refractive index matching, coupled with the structural analysis, will be used to investigate detailed features of the interactions between the fluid, structure, and neuromuscular activation and improve the reduced-order model. Then, the model will be used to evaluate optimized morphology and internal forcing patterns in viscous to inertial swim regimes, for uniform and complex background flows.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该赠款将支持水生推进机制的基本研究。这项研究将通过基于基本原理来增强生物启发的运动的发展,从而使科学和工程领域(例如勘探,运输和防御)受益,从而使生物启发的运动的发展使鱼类降低了高效和敏捷。柔性车身与周围流体之间的相互作用的准确建模对于理解和优化能耗,速度和可操作性至关重要。现有的不断发展游泳模型在运动形式及其可以准确描述的流动条件上具有限制性。这项研究将通过引入更现实的身体运动和流动条件来帮助克服这些限制。将开发出一种新型的身体鳍动力学模型,其中包括以前忽略的对游泳性能重要的关键元素。这项研究结合了振动理论,流体和固体力学,以及数值和实验分析,为研究生和本科生提供了跨学科研究,以及K-12外展活动的创意活动,包括鱼类设计竞赛。触发性游泳是身体与周围流体之间非线性互动的结果。内部强迫和身体变形的细微变化可能会导致游泳性能的显着差异。该奖项支持将解决具有多种游泳步态和条件的可变身体鳍配置下精确流体结构建模的基本挑战的研究。将开发出一个细长的身体作为强制性弹性振荡器的降低阶级游泳运动的模型,以基于状态变量的模态分析,以有效的方法连接内部肌肉强迫,外部流体力和身体运动。对鳍片的非语言限制将用于基于经典水动力学模型的流体力预测,该模型仅限于理想化的几何形状和流动条件。非同步模式的使用将使具有纵向变化特性的通用体波的描述。高保真计算流体结构模拟以及基于折射率匹配的创新水孔测量以及与结构分析相结合的,将用于研究流体,结构和结构和神经肌肉激活之间相互作用的详细特征,并改善降序模型。然后,该模型将用于评估优化的形态和内部强迫模式,以惯性游泳的粘性和复杂的背景流进行评估。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的智力优点和更广泛的影响审查标准通过评估来进行评估的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Junlin Yuan其他文献

A method for melt pool state monitoring in laser-based direct energy deposition based on DenseNet
基于DenseNet的激光直接能量沉积熔池状态监测方法
  • DOI:
    10.1016/j.measurement.2022.111146
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Junlin Yuan;Hanru Liu;Weiwei Liu;Fengtao Wang;Shitong Peng
  • 通讯作者:
    Shitong Peng
In-suit monitoring melt pool states in direct energy deposition using ResNet
使用 ResNet 监测直接能量沉积中的熔池状态
  • DOI:
    10.1088/1361-6501/ac8f62
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Hanru Liu;Junlin Yuan;Shitong Peng;Fengtao Wang;Weiwei Liu
  • 通讯作者:
    Weiwei Liu
Self-powered intelligent badminton racket for machine learning-enhanced real-time training monitoring
  • DOI:
    10.1016/j.nanoen.2024.110377
  • 发表时间:
    2024-12-15
  • 期刊:
  • 影响因子:
  • 作者:
    Junlin Yuan;Jiangtao Xue;Minghao Liu;Li Wu;Jian Cheng;Xuecheng Qu;Dengjie Yu;Engui Wang;Zhenmin Fan;Zhuo Liu;Zhou Li;Yuxiang Wu
  • 通讯作者:
    Yuxiang Wu
Study of oxidation process of Cr/Cu/Cr thin film electrodes
  • DOI:
    10.1016/j.jpcs.2009.09.014
  • 发表时间:
    2009-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Junlin Yuan;Weixiang Weng;Zhilong Lin Tailiang Guo
  • 通讯作者:
    Zhilong Lin Tailiang Guo

Junlin Yuan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

不同SARS-CoV-2变种感染中体液免疫的动态分析和应答机制研究
  • 批准号:
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
不同SARS-CoV-2变种感染中体液免疫的动态分析和应答机制研究
  • 批准号:
    82371784
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
新冠患者和疫苗免疫者体液免疫应答多维动态分析及与保护效果量效关系研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
新冠患者和疫苗免疫者体液免疫应答多维动态分析及与保护效果量效关系研究
  • 批准号:
    82172240
  • 批准年份:
    2021
  • 资助金额:
    55.00 万元
  • 项目类别:
    面上项目
基于反应性聚合物涂层的原位衍生-微富集策略用于体液脂质异构体的质谱分析方法研究
  • 批准号:
    22104099
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Analysis and modeling of liquid-vapor phase change phenomena by measuring the nonequilibrium velocity distribution of evaporating molecules
通过测量蒸发分子的非平衡速度分布来分析和建模液-汽相变现象
  • 批准号:
    23H01338
  • 财政年份:
    2023
  • 资助金额:
    $ 49.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Achieving Sustained Control of Inflammation to Prevent Post-Traumatic Osteoarthritis (PTOA)
实现炎症的持续控制以预防创伤后骨关节炎 (PTOA)
  • 批准号:
    10641225
  • 财政年份:
    2023
  • 资助金额:
    $ 49.09万
  • 项目类别:
Adult human brain tissue cultures to study neuroHIV
成人脑组织培养研究神经艾滋病毒
  • 批准号:
    10619170
  • 财政年份:
    2023
  • 资助金额:
    $ 49.09万
  • 项目类别:
Evaluating a novel, orally-active TREM2-targeting drug in AD
评估一种新型口服活性 TREM2 靶向药物治疗 AD 的效果
  • 批准号:
    10735206
  • 财政年份:
    2023
  • 资助金额:
    $ 49.09万
  • 项目类别:
Integrating circulating tumor DNA assay and protein-based MRI to accurately monitor glioma therapy
整合循环肿瘤 DNA 检测和基于蛋白质的 MRI 来准确监测神经胶质瘤治疗
  • 批准号:
    10735404
  • 财政年份:
    2023
  • 资助金额:
    $ 49.09万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了