Task-Aware Quantization in Data Science: Theory and Fast Algorithms
数据科学中的任务感知量化:理论和快速算法
基本信息
- 批准号:2012546
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Machine learning algorithms are ubiquitous, and their applications in data science are on the rise. This project focuses on developing computationally efficient algorithms in data-science applications where discretization, also known as quantization, plays a fundamental role. Here quantization is the process that replaces real numbers, like those obtained from sensor measurements, by elements in a finite set. This makes them amenable to efficient digital representation, storage, compression, and transmission. Applications of interest include deep learning, an area that has led to sensational breakthroughs in a stunning range of areas. One of its frontiers is building neural networks on hardware that can be put into handheld and wearable devices as well as those in smart homes. For that, neural networks must be efficiently quantized; a key goal of this project is to devise algorithms for this task. Another application concerns edge devices, such as sensors in a sensor network, which communicate and perform computations under severe power limitations. A goal of this project is to develop computationally efficient algorithms for quantizing and compressing their data to enable reducing power use. A third application involves recommender systems, which collect users’ discretized ratings of products and transform them into other product recommendations for others. The project provides training for graduate students through involvement in the research.This project focuses on developing computationally efficient quantization algorithms with provable error guarantees. It is motivated by three important application areas. First, in settings where the goal is discretizing the parameters of a function, as in the compression of deep neural networks, it seeks quantization algorithms to generate functionally equivalent networks that require many fewer bits to store. The second motivating area involves settings where inference tasks must be done on edge-devices, under communication and computation constraints, as in sensor-networks. Here, the focus is on computationally efficient measurement, quantization, and inference algorithms that entail minimal memory and power requirements. Third, in applications where signal recovery is the goal and measurements are inherently binary and expensive to collect, as in recommender systems, the focus is on devising and studying efficient adaptive algorithms for sequential selection of the measurements. This project, which aims to develop state of the art task-aware algorithms, entails developing and using tools from several areas of mathematics, including methods from geometric functional analysis and non-asymptotic random matrix theory. Connections with frame theory, compressed sensing, and noise-shaping quantization will also be established. In analyzing the algorithms, discrete geometry, optimization, and numerical analysis techniques will be developed and employed. To compare theoretical guarantees associated with this project with best possible ones, approximation theory will be essential.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习算法无处不在,其在数据科学中的应用正在不断增加,该项目专注于开发数据科学应用中的计算算法,其中离散化(也称为量化)发挥着基础作用,而高效量化是取代这一过程的过程。实数,如通过有限集合中的元素通过传感器测量获得的数据,这使得它们能够进行有效的数字表示、存储、压缩和传输,令人感兴趣的应用包括深度学习,这一领域已经取得了重大突破。其前沿领域之一是在可应用于手持设备和可穿戴设备以及智能家居的硬件上构建神经网络,因此必须对神经网络进行有效量化;另一个应用程序涉及边缘设备,例如传感器网络中的传感器,它们在严格的功率限制下进行通信和执行计算,该项目的目标是开发计算高效的算法来量化和压缩其数据。启用降低功率第三个应用涉及推荐系统,它收集用户对产品的离散评级,并将其转化为其他产品的推荐。该项目通过参与研究为研究生提供培训。该项目专注于开发具有计算效率的量化算法。它的动机是三个重要的应用领域,其目标是离散化函数的参数,例如在深度神经网络的压缩中,它寻求量化算法来生成需要更少的功能等效的网络。位第二个激励领域涉及推理任务必须在通信和计算限制下在边缘设备上完成的设置,就像在传感器网络中一样,这里的重点是需要最少的计算效率的测量、量化和推理算法。第三,在以信号恢复为目标且测量本质上是二进制且收集成本昂贵的应用中,例如在推荐系统中,重点是设计和研究用于测量的顺序选择的高效自适应算法。其目的是发展国家任务感知算法的艺术,需要开发和使用多个数学领域的工具,包括几何泛函分析和非渐近随机矩阵理论的方法,还将建立与框架理论、压缩感知和噪声整形量化的联系。在分析算法时,将开发和采用离散几何、优化和数值分析技术,为了将与该项目相关的理论保证与最佳可能的理论保证进行比较,逼近理论将是必不可少的。该奖项反映了 NSF 的法定使命,并被视为。值得通过使用基金会的智力优点和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Post-training Quantization for Neural Networks with Provable Guarantees
- DOI:10.1137/22m1511709
- 发表时间:2022-01
- 期刊:
- 影响因子:0
- 作者:Jinjie Zhang;Yixuan Zhou;Rayan Saab
- 通讯作者:Jinjie Zhang;Yixuan Zhou;Rayan Saab
On the ℓ∞-norms of the singular vectors of arbitrary powers of a difference matrix with applications to sigma-delta quantization
关于差分矩阵任意次幂的奇异向量的-范数及其在 sigma-delta 量化中的应用
- DOI:10.1016/j.laa.2021.05.015
- 发表时间:2021
- 期刊:
- 影响因子:1.1
- 作者:Faust, Theodore;Iwen, Mark;Saab, Rayan;Wang, Rongrong
- 通讯作者:Wang, Rongrong
FASTER BINARY EMBEDDINGS FOR PRESERVING EUCLIDEAN DISTANCES
更快的二进制嵌入以保持欧氏距离
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Zhang, Jinjie;Saab, Rayan
- 通讯作者:Saab, Rayan
A Greedy Algorithm for Quantizing Neural Networks
量化神经网络的贪心算法
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:6
- 作者:Lybrand, Eric;Saab, Rayan
- 通讯作者:Saab, Rayan
Quantization of Bandlimited Graph Signals
带限图信号的量化
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Felix Krahmer;He Lyu;Rayan Saab;Anna Veselovska;Rongrong Wang
- 通讯作者:Rongrong Wang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rayan Saab其他文献
Blind Source Separation of Sparse Sources with Attenuations and Delays
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Rayan Saab - 通讯作者:
Rayan Saab
Blind source separation of sparse sources with attenuations and delays : a novel approach for the under-determined case
- DOI:
10.14288/1.0092165 - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Rayan Saab - 通讯作者:
Rayan Saab
Random encoding of quantized finite frame expansions
量化有限帧扩展的随机编码
- DOI:
10.1117/12.2025293 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
M. Iwen;Rayan Saab - 通讯作者:
Rayan Saab
Finite sample posterior concentration in high-dimensional regression
高维回归中的有限样本后验集中
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Nate Strawn;Artin Armagan;Rayan Saab;L. Carin;D. Dunson - 通讯作者:
D. Dunson
Phase retrieval from local measurements in two dimensions
从二维局部测量中检索相位
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
M. Iwen;Brian Preskitt;Rayan Saab;A. Viswanathan - 通讯作者:
A. Viswanathan
Rayan Saab的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rayan Saab', 18)}}的其他基金
Sampling and quantization theorems for modern data acquisition
现代数据采集的采样和量化定理
- 批准号:
1517204 - 财政年份:2015
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似国自然基金
动态无线传感器网络弹性化容错组网技术与传输机制研究
- 批准号:61001096
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于计算和存储感知的运动估计算法与结构研究
- 批准号:60803013
- 批准年份:2008
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Traversing the Gray Zone with Scale-aware Turbulence Closures
通过尺度感知的湍流闭合穿越灰色区域
- 批准号:
2337399 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
RII Track-4:NSF: HEAL: Heterogeneity-aware Efficient and Adaptive Learning at Clusters and Edges
RII Track-4:NSF:HEAL:集群和边缘的异质性感知高效自适应学习
- 批准号:
2327452 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331710 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331711 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CAREER: A Universal Framework for Safety-Aware Data-Driven Control and Estimation
职业:安全意识数据驱动控制和估计的通用框架
- 批准号:
2340089 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant