Interacting Atoms in Optical Lattices
光学晶格中相互作用的原子
基本信息
- 批准号:2012039
- 负责人:
- 金额:$ 68.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
General audience abstract:The frontier of the technological application of quantum mechanics involves taking advantage of quantum entanglement, where the detailed interactions among particles are of central importance. Such emerging technologies include quantum simulators, quantum computers and quantum communication, as well as advanced versions of older quantum technologies like quantum sensors and clocks. Advancing these technologies requires understanding the dynamics of closed ‘quantum many-body systems,’ i.e. systems containing many particles which interact with each other and where quantum mechanics is important. The goal of this work is to help develop a universal description of such dynamics. The researchers will experimentally study the quantum many-body system that currently has the most complete equilibrium theoretical description, one-dimensional gases, which they make by putting ultracold atoms into optical lattices (periodic structures made from laser light). By taking these gases out of equilibrium, in situations where entanglement dominates dynamics, they can cleanly test emerging theoretical approaches. The experimental system can be made progressively more complex, so that the theories used to describe them can encompass a wide range of non-equilibrium systems. The largest immediate impact is likely to be in our understanding of the reliability of quantum simulators and the robustness of quantum computers. The training in experimental physics obtained by undergraduates and graduate students working on this experiment is comprehensive and is good preparation for many different types of experimental work.Technical audience abstract:The PI and his students will perform a series of measurements on one-dimensional (1D) Bose gases, which consist of ultra-cold 87Rb atoms trapped in a 2D array of tubes that are made with a 2D optical lattice. These interacting many-body systems are integrable, which implies that they are characterized by a large set of extra conserved quantities. The experiments generally involve taking these systems out of equilibrium and studying the ensuing dynamics. Unlike generic many-body quantum systems, the equilibrium properties of 1D gases can be calculated exactly. Their non-equilibrium properties, however, have been a challenge to calculate. A recently developed numerical technique, generalized hydrodynamics (GHD), promises to describe, to within certain approximations, the dynamics of integrable systems. GHD is based upon keeping track of the evolving local distribution of ‘rapidities’, which are the momenta associated with the quasiparticles that emerge in integrable systems. These important but abstract objects have only recently been measured (by the PI’s team) and the team plans to measure them in a much more diverse set of circumstances. With these measurements will come the ability to quantitatively test GHD for the first time in the interesting intermediate and strong coupling regimes. They will also study the border at which GHD becomes applicable, by measuring the evolution of momentum and rapidity distributions after a wavefunction quench. Finally, they propose to extend these studies to a 1D gas in a weak lattice, a non-integrable system for which GHD might also be a useful description, at least at relatively short times. The search for a universal description of dynamics in quantum many-body systems is an important physics frontier, and GHD holds the promise of providing its core.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
普通受众摘要:量子力学技术应用的前沿涉及利用量子纠缠,其中粒子之间的详细相互作用至关重要。这样的新兴技术包括量子模拟器,量子计算机和量子通信,以及旧量子技术(如量子传感器和时钟)的先进版本。推进这些技术需要了解封闭的“量子多体系统”的动力学,即包含许多彼此相互作用以及量子力学很重要的系统。这项工作的目的是帮助开发对这种动态的普遍描述。研究人员将在实验上研究当前具有最完整的平等理论描述,一维气体的量子多体系统,它们通过将超电原子放入光学晶格(周期性结构)中制成的一维气体。通过将这些气体从平衡中取出,在纠缠占主导地位的情况下,它们可以清洁测试出现的理论方法。实验系统可以逐渐变得更加复杂,因此用来描述它们的理论可以包含广泛的非平衡系统。最大的直接影响可能是我们对量子模拟器的可靠性和量子计算机的鲁棒性的理解。 The training In experimental physics obtained by undergraduates and graduate students working on this experiment is comprehensive and is good preparation for many different types of experimental work.Technical audience abstract:The PI and his students will perform a series of measurements on one-dimensional (1D) Bose gases, which consist of ultra-cold 87Rb atoms trapped in a 2D array of tubes that are made with a 2D optical lattice.这些相互作用的多体系统是可以集成的,这意味着它们的特征是大量额外的保守量。实验通常涉及将这些系统摆脱平衡并研究确保动态。与通用多体量子系统不同,可以精确计算一维气体的平衡性能。但是,它们的非平衡性能是计算的挑战。一种最近开发的数值技术,广义流体动力学(GHD),有望在某些近似值内描述可集成系统的动力学。 GHD基于跟踪“速度”的局部分布,这是与可集成系统中出现的准粒子相关的矩。这些重要但抽象的对象最近才被PI团队(PI团队)衡量,并且该团队计划在更多潜水员的情况下进行衡量。通过这些测量值,将能够在有趣的中间和强耦合方案中首次定量测试GHD。他们还将通过测量波力淬火后的动量和速度分布的演变来研究GHD适用的边界。最后,他们建议将这些研究扩展到弱晶格中的一维气体,这是一种不可融合的系统,至少在相对较短的时间,GHD也可能是有用的描述。搜索量子多体系统动态的普遍描述是重要的物理领域,而GHD则具有提供其核心的希望。该奖项反映了NSF的法定任务,并通过使用基金会的知识分子和更广泛的影响来评估NSF的法定任务。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Generalized hydrodynamics in strongly interacting 1D Bose gases
- DOI:10.1126/science.abf0147
- 发表时间:2020-09
- 期刊:
- 影响因子:56.9
- 作者:N. Malvania;Yicheng Zhang;Yuan Le;J. Dubail;M. Rigol;D. Weiss
- 通讯作者:N. Malvania;Yicheng Zhang;Yuan Le;J. Dubail;M. Rigol;D. Weiss
Observation of hydrodynamization and local prethermalization in 1D Bose gases
- DOI:10.1038/s41586-023-05979-9
- 发表时间:2022-10
- 期刊:
- 影响因子:64.8
- 作者:Yuan Le;Yicheng Zhang;S. Gopalakrishnan;M. Rigol;D. Weiss
- 通讯作者:Yuan Le;Yicheng Zhang;S. Gopalakrishnan;M. Rigol;D. Weiss
Observation of dynamical fermionization
- DOI:10.1126/science.aaz0242
- 发表时间:2019-08
- 期刊:
- 影响因子:56.9
- 作者:Joshua M. Wilson;N. Malvania;Yuan Le;Yicheng Zhang;M. Rigol;D. Weiss
- 通讯作者:Joshua M. Wilson;N. Malvania;Yuan Le;Yicheng Zhang;M. Rigol;D. Weiss
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Weiss其他文献
Visual Public Relations and User Fantasies on Facebook: The Case of an African Presidential Inauguration During the COVID-19 Pandemic
Facebook 上的视觉公共关系和用户幻想:COVID-19 大流行期间非洲总统就职典礼的案例
- DOI:
10.1080/1062726x.2023.2292989 - 发表时间:
2023 - 期刊:
- 影响因子:3.4
- 作者:
Nana Kwame Osei Fordjour;David Weiss;Timothy Kwakye Karikari - 通讯作者:
Timothy Kwakye Karikari
Metonymy in Black and White: Shelby Steele's Revelatory Racial Tropes
- DOI:
10.1080/10646170590915817 - 发表时间:
2005-03 - 期刊:
- 影响因子:1
- 作者:
David Weiss - 通讯作者:
David Weiss
Hybride Kulturschichten: Oka Masao und die Wiener Schule der Ethnologie
混合文化史:冈正夫与维也纳民族学学院
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Kyan A.;Takakura M.;Kamiya Y.;Kinjo N.;Kobayashi M.;Nakasone T.;草原和博,斉藤仁一郎;Shuichiro Nakao;David Weiss - 通讯作者:
David Weiss
小学校低学年における学級規模の縮小効果:沖縄県N村の取組みに対する教員認知の質的分析から
小学低年级缩小班级规模的影响:来自冲绳县 N 村教师对举措认知的定性分析
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
中里見敬;李莉薇;David Weiss;小林稔 嘉数健悟 - 通讯作者:
小林稔 嘉数健悟
Money under the mattress: Inflation and lending of last resort
- DOI:
10.1016/j.jet.2024.105804 - 发表时间:
2024-04-01 - 期刊:
- 影响因子:
- 作者:
Gadi Barlevy;Daniel Bird;Daniel Fershtman;David Weiss - 通讯作者:
David Weiss
David Weiss的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Weiss', 18)}}的其他基金
REU Site: Microbiology at the host-pathogen interface
REU 站点:宿主-病原体界面的微生物学
- 批准号:
2244169 - 财政年份:2023
- 资助金额:
$ 68.37万 - 项目类别:
Continuing Grant
Quantum Computing with Cs Atoms in a 3D Optical Lattice
3D 光学晶格中铯原子的量子计算
- 批准号:
2112842 - 财政年份:2021
- 资助金额:
$ 68.37万 - 项目类别:
Standard Grant
REU Site: Microbiology at the University of Iowa
REU 网站:爱荷华大学微生物学
- 批准号:
1852070 - 财政年份:2019
- 资助金额:
$ 68.37万 - 项目类别:
Standard Grant
SBIR Phase I: Non-crystallizable charge transporting organic materials as OLED functional layers and thermally activated delayed fluorescence emitter-layer hosts
SBIR 第一阶段:作为 OLED 功能层和热激活延迟荧光发射体层主体的非结晶电荷传输有机材料
- 批准号:
1843233 - 财政年份:2019
- 资助金额:
$ 68.37万 - 项目类别:
Standard Grant
Cs Energy Shifts in an Electric Field
电场中铯能量的变化
- 批准号:
1912577 - 财政年份:2019
- 资助金额:
$ 68.37万 - 项目类别:
Continuing Grant
Quantum Computing with CS Atom Qubits
使用 CS Atom 量子位进行量子计算
- 批准号:
1820849 - 财政年份:2018
- 资助金额:
$ 68.37万 - 项目类别:
Continuing Grant
Interacting atoms in optical lattices
光学晶格中相互作用的原子
- 批准号:
1707576 - 财政年份:2017
- 资助金额:
$ 68.37万 - 项目类别:
Continuing Grant
REU Site: Microbiology at The University of Iowa
REU 网站:爱荷华大学微生物学
- 批准号:
1559927 - 财政年份:2016
- 资助金额:
$ 68.37万 - 项目类别:
Standard Grant
Search for the Electron EDM Using Cs and Rb in Optical Lattice Traps
寻找光晶格陷阱中使用 Cs 和 Rb 的电子 EDM
- 批准号:
1607517 - 财政年份:2016
- 资助金额:
$ 68.37万 - 项目类别:
Continuing Grant
Quantum Computing with Cs Atom Qubits
使用 Cs 原子量子位进行量子计算
- 批准号:
1520976 - 财政年份:2015
- 资助金额:
$ 68.37万 - 项目类别:
Continuing Grant
相似国自然基金
原子-微纳波导系统中的非厄米非线性与量子光学效应研究
- 批准号:12374303
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
基于光学粘胶的腔内冷却87Rb冷原子钟微波场与光场所致频移效应研究
- 批准号:12304550
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于混合配位原子的畸变多面体研制强倍频非线性光学晶体
- 批准号:22275184
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于BHF理论的原子核微观光学势研究
- 批准号:12275025
- 批准年份:2022
- 资助金额:55.00 万元
- 项目类别:面上项目
基于BHF理论的原子核微观光学势研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Robustness of Chern insulators in interacting ultracold atoms in optical lattices
陈绝缘体在光学晶格中相互作用的超冷原子中的鲁棒性
- 批准号:
574745-2022 - 财政年份:2022
- 资助金额:
$ 68.37万 - 项目类别:
University Undergraduate Student Research Awards
Theoretical study of optical response of molecules and metallic nanoparticles interacting through atomic layer materials
分子和金属纳米粒子通过原子层材料相互作用的光学响应的理论研究
- 批准号:
20K03799 - 财政年份:2020
- 资助金额:
$ 68.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Interacting atoms in optical lattices
光学晶格中相互作用的原子
- 批准号:
1707576 - 财政年份:2017
- 资助金额:
$ 68.37万 - 项目类别:
Continuing Grant
Interacting Atoms in Optical Lattices
光学晶格中相互作用的原子
- 批准号:
1405968 - 财政年份:2014
- 资助金额:
$ 68.37万 - 项目类别:
Continuing Grant
Simulating cold interacting atoms on disordered optical lattices
模拟无序光学晶格上的冷相互作用原子
- 批准号:
EP/J003476/1 - 财政年份:2012
- 资助金额:
$ 68.37万 - 项目类别:
Research Grant