AF:Small: Semidefinite Programming for High-dimensional Statistics
AF:Small:高维统计的半定规划
基本信息
- 批准号:2007676
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
With the deluge of data in almost all areas of human endeavor, there is a growing need for efficient algorithms to uncover underlying patterns and make inferences from the data. The field of statistics has long studied the task of making inferences from data, while largely ignoring issues of computational efficiency, but instead focusing on the quantity of data needed. As data gets increasingly high-dimensional, noisy and corrupted, computational efficiency becomes a vital concern. This project will use the powerful technique of semidefinite programming arising from optimization towards computational tasks in high-dimensional statistics. Specifically, the goal of this research is to develop a systematic approach for using semidefinite programming to design algorithms in high-dimensional statistics. The project will lead to an exchange of problems, definitions and technical tools between the areas of algorithms, statistics and statistical physics. The project includes synergistic educational and outreach activities such as devising a graduate class on complexity of statistics, facilitating undergraduate and graduate research work.There are three central themes to this research work. First, exploiting structure, how can algorithms based on semidefinite programming (SDP) exploit distributional assumptions about the input? More precisely, what is the correct way to encode information about the prior distribution of the input into the SDP-based algorithm? Second, how can algorithms be designed that are robust to noise, outliers or large deviations in the data? In its extreme form, how algorithms be designed with guarantees even in presence of an overwhelming number of outliers? Finally, using techniques inspired by statistical physics, many statistical problems are conjectured to exhibit a sudden change in their computational complexity -- a "computational phase transition". Can the lens of SDP be used to shed more light on these computational phase transitions? The proposed research would not only lead to a flurry of new SDP-based algorithms for this class of problems, but also potentially yield algorithms that provably match the performance of belief-propagation/message-passing algorithms, an algorithmic approach believed to be optimal for Bayesian inference.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着人类努力几乎所有领域的数据泛滥,有效算法越来越需要发现潜在的模式并从数据中推断出来。 统计领域长期以来一直研究了从数据中进行推断的任务,同时在很大程度上忽略了计算效率问题,而是专注于所需的数据数量。 随着数据变得越来越高,嘈杂和损坏,计算效率成为至关重要的问题。 该项目将使用由优化到高维统计中的计算任务引起的半决赛编程的强大技术。 具体而言,这项研究的目的是开发一种系统的方法,用于使用半尺度统计算法来设计算法。 该项目将导致算法,统计和统计物理学领域之间的问题,定义和技术工具的交换。 该项目包括协同教育和推广活动,例如设计有关统计复杂性,促进本科和研究生研究工作的研究生课程。这项研究工作有三个中心主题。 首先,利用结构,如何基于半决赛编程(SDP)利用有关输入的分布假设的算法? 更确切地说,编码有关在基于SDP的算法中的先前分布的信息的正确方法是什么? 其次,如何设计对数据中噪声,离群值或较大偏差的算法? 以极端的形式,即使存在压倒性的异常值,也如何设计算法可以保证? 最后,利用受统计物理启发的技术,许多统计问题被猜想以表现出其计算复杂性突然变化 - 一种“计算相变”。 SDP的镜头可以用来更多地阐明这些计算相变吗? 拟议的研究不仅会导致一系列新的基于SDP的算法针对这类问题,而且还产生了可能产生算法,这些算法与证明是与信念促进/消息传播算法的性能相匹配的算法,这是一种算法的方法,该方法被认为是对贝耶斯的最佳奖励,这是对贝耶斯的最佳选择。和更广泛的影响审查标准。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Local Statistics, Semidefinite Programming, and Community Detection*
局部统计、半定规划和社区检测*
- DOI:10.1137/1.9781611976465.79
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Jess Banks, Sidhanth Mohanty
- 通讯作者:Jess Banks, Sidhanth Mohanty
On statistical inference when fixed points of belief propagation are unstable
- DOI:10.1109/focs52979.2021.00047
- 发表时间:2021-01
- 期刊:
- 影响因子:0
- 作者:Siqi Liu;Sidhanth Mohanty;P. Raghavendra
- 通讯作者:Siqi Liu;Sidhanth Mohanty;P. Raghavendra
Matrix discrepancy from Quantum communication
量子通信的矩阵差异
- DOI:10.1145/3519935.3519954
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Hopkins, Samuel B.;Raghavendra, Prasad;Shetty, Abhishek
- 通讯作者:Shetty, Abhishek
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Prasad Raghavendra其他文献
Robust Recovery for Stochastic Block Models, Simplified and Generalized
简化和广义随机块模型的鲁棒恢复
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Sidhanth Mohanty;Prasad Raghavendra;David X. Wu - 通讯作者:
David X. Wu
Omnipredictors for Regression and the Approximate Rank of Convex Functions
回归的全预测器和凸函数的近似秩
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Parikshit Gopalan;Princewill Okoroafor;Prasad Raghavendra;Abhishek Shetty;Mihir Singhal - 通讯作者:
Mihir Singhal
Electronic Colloquium on Computational Complexity, Report No. 27 (2011) Beating the Random Ordering is Hard: Every ordering CSP is approximation resistant ¶
计算复杂性电子研讨会,第 27 号报告 (2011) 击败随机排序很难:每个排序 CSP 都具有近似抵抗性 ¶
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
V. Guruswami;Johan Håstad;R. Manokaran;Prasad Raghavendra;Moses Charikar - 通讯作者:
Moses Charikar
Theory of Computing
计算理论
- DOI:
10.4086/toc - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Alexandr Andoni;Nikhil Bansal;P. Beame;Giuseppe Italiano;Sanjeev Khanna;Ryan O’Donnell;T. Pitassi;T. Rabin;Tim Roughgarden;Clifford Stein;Rocco Servedio;Amir Abboud;Nima Anari;Ibm Srinivasan Arunachalam;T. J. Watson;Research Center;Petra Berenbrink;Aaron Bernstein;Aditya Bhaskara;Sayan Bhattacharya;Eric Blais;H. Bodlaender;Adam Bouland;Anne Broadbent;Mark Bun;Timothy Chan;Arkadev Chattopadhyay;Xue Chen;Gil Cohen;Dana Dachman;Anindya De;Shahar Dobzhinski;Zhiyi Huang;Ken;Robin Kothari;Marvin Künnemann;Tu Kaiserslautern;Rasmus Kyng;E. Zurich;Sophie Laplante;D. Lokshtanov;S. Mahabadi;Nicole Megow;Ankur Moitra;Technion Shay Moran;Google Research;Christopher Musco;Prasad Raghavendra;Alex Russell;Laura Sanità;Alex Slivkins;David Steurer;Epfl Ola Svensson;Chaitanya Swamy;Madhur Tulsiani;Christos Tzamos;Andreas Wiese;Mary Wootters;Huacheng Yu;Aaron Potechin;Aaron Sidford;Aarushi Goel;Aayush Jain;Abhiram Natarajan;Abhishek Shetty;Adam Karczmarz;Adam O’Neill;Aditi Dudeja;Aditi Laddha;Aditya Krishnan;Adrian Vladu Afrouz;J. Ameli;Ainesh Bakshi;Akihito Soeda;Akshay Krishnamurthy;Albert Cheu;A. Grilo;Alex Wein;Alexander Belov;Alexander Block;Alexander Golovnev;Alexander Poremba;Alexander Shen;Alexander Skopalik;Alexandra Henzinger;Alexandros Hollender;Ali Parviz;Alkis Kalavasis;Allen Liu;Aloni Cohen;Amartya Shankha;Biswas Amey;Bhangale Amin;Coja;Yehudayoff Amir;Zandieh Amit;Daniely Amit;Kumar Amnon;Ta;Beimel Anand;Louis Anand Natarajan;Anders Claesson;André Chailloux;André Nusser;Andrea Coladangelo;Andrea Lincoln;Andreas Björklund;Andreas Maggiori;A. Krokhin;A. Romashchenko;Andrej Risteski;Anirban Chowdhury;Anirudh Krishna;A. Mukherjee;Ankit Garg;Anna Karlin;Anthony Leverrier;Antonio Blanca;A. Antoniadis;Anupam Gupta;Anupam Prakash;A. Singh;Aravindan Vijayaraghavan;Argyrios Deligkas;Ariel Kulik;Ariel Schvartzman;Ariel Shaulker;A. Cornelissen;Arka Rai;Choudhuri Arkady;Yerukhimovich Arnab;Bhattacharyya Arthur Mehta;Artur Czumaj;A. Backurs;A. Jambulapati;Ashley Montanaro;A. Sah;A. Mantri;Aviad Rubinstein;Avishay Tal;Badih Ghazi;Bartek Blaszczyszyn;Benjamin Moseley;Benny Pinkas;Bento Natura;Bernhard Haeupler;Bill Fefferman;B. Mance;Binghui Peng;Bingkai Lin;B. Sinaimeri;Bo Waggoner;Bodo Manthey;Bohdan Kivva;Brendan Lucier Bundit;Laekhanukit Burak;Sahinoglu Cameron;Seth Chaodong Zheng;Charles Carlson;Chen;Chenghao Guo;Chenglin Fan;Chenwei Wu;Chethan Kamath;Chi Jin;J. Thaler;Jyun;Kaave Hosseini;Kaito Fujii;Kamesh Munagala;Kangning Wang;Kanstantsin Pashkovich;Karl Bringmann Karol;Wegrzycki Karteek;Sreenivasaiah Karthik;Chandrasekaran Karthik;Sankararaman Karthik;C. S. K. Green;Larsen Kasturi;Varadarajan Keita;Xagawa Kent Quanrud;Kevin Schewior;Kevin Tian;Kilian Risse;Kirankumar Shiragur;K. Pruhs;K. Efremenko;Konstantin Makarychev;Konstantin Zabarnyi;Krišj¯anis Pr¯usis;Kuan Cheng;Kuikui Liu;Kunal Marwaha;Lars Rohwedder László;Kozma László;A. Végh;L'eo Colisson;Leo de Castro;Leonid Barenboim Letong;Li;Li;L. Roditty;Lieven De;Lathauwer Lijie;Chen Lior;Eldar Lior;Rotem Luca Zanetti;Luisa Sinisclachi;Luke Postle;Luowen Qian;Lydia Zakynthinou;Mahbod Majid;Makrand Sinha;Malin Rau Manas;Jyoti Kashyop;Manolis Zampetakis;Maoyuan Song;Marc Roth;Marc Vinyals;Marcin Bieńkowski;Marcin Pilipczuk;Marco Molinaro;Marcus Michelen;Mark de Berg;M. Jerrum;Mark Sellke;Mark Zhandry;Markus Bläser;Markus Lohrey;Marshall Ball;Marthe Bonamy;Martin Fürer;Martin Hoefer;M. Kokainis;Masahiro Hachimori;Matteo Castiglioni;Matthias Englert;Matti Karppa;Max Hahn;Max Hopkins;Maximilian Probst;Gutenberg Mayank Goswami;Mehtaab Sawhney;Meike Hatzel;Meng He;Mengxiao Zhang;Meni Sadigurski;M. Parter;M. Dinitz;Michael Elkin;Michael Kapralov;Michael Kearns;James R. Lee;Sudatta Bhattacharya;Michal Koucký;Hadley Black;Deeparnab Chakrabarty;C. Seshadhri;Mahsa Derakhshan;Naveen Durvasula;Nika Haghtalab;Peter Kiss;Thatchaphol Saranurak;Soheil Behnezhad;M. Roghani;Hung Le;Shay Solomon;Václav Rozhon;Anders Martinsson;Christoph Grunau;G. Z. —. Eth;Zurich;Switzerland;Morris Yau — Massachusetts;Noah Golowich;Dhruv Rohatgi — Massachusetts;Qinghua Liu;Praneeth Netrapalli;Csaba Szepesvári;Debarati Das;Jacob Gilbert;Mohammadtaghi Hajiaghayi;Tomasz Kociumaka;B. Saha;K. Bringmann;Nick Fischer — Weizmann;Ce Jin;Yinzhan Xu — Massachusetts;Virginia Vassilevska Williams;Yinzhan Xu;Josh Alman;Kevin Rao;Hamed Hatami;—. XiangMeng;McGill University;Edith Cohen;Xin Lyu;Tamás Jelani Nelson;Uri Stemmer — Google;Research;Daniel Alabi;Pravesh K. Kothari;Pranay Tankala;Prayaag Venkat;Fred Zhang;Samuel B. Hopkins;Gautam Kamath;Shyam Narayanan — Massachusetts;Marco Gaboardi;R. Impagliazzo;Rex Lei;Satchit Sivakumar;Jessica Sorrell;T. Korhonen;Marco Bressan;Matthias Lanzinger;Huck Bennett;Mahdi Cheraghchi;V. Guruswami;João Ribeiro;Jan Dreier;Nikolas Mählmann;Sebastian Siebertz — TU Wien;The Randomized k ;Conjecture Is;False;Sébastien Bubeck;Christian Coester;Yuval Rabani — Microsoft;Wei;Ethan Mook;Daniel Wichs;Joshua Brakensiek;Sai Sandeep — Stanford;University;Lorenzo Ciardo;Stanislav Živný;Amey Bhangale;Subhash Khot;Dor Minzer;David Ellis;Guy Kindler;Noam Lifshitz;Ronen Eldan;Dan Mikulincer;George Christodoulou;E. Koutsoupias;Annamária Kovács;José Correa;Andrés Cristi;Xi Chen;Matheus Venturyne;Xavier Ferreira;David C. Parkes;Yang Cai;Jinzhao Wu;Zhengyang Liu;Zeyu Ren;Zihe Wang;Ravishankar Krishnaswamy;Shi Li;Varun Suriyanarayana - 通讯作者:
Varun Suriyanarayana
Sdp gaps and ugc hardness for multiway cut, 0-extension, and metric labeling
用于多向切割、0 延伸和公制标签的 Sdp 间隙和 ugc 硬度
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
R. Manokaran;Joseph Naor;Prasad Raghavendra;Roy Schwartz - 通讯作者:
Roy Schwartz
Prasad Raghavendra的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Prasad Raghavendra', 18)}}的其他基金
AF:Small: Bayesian Estimation and Constraint Satisfaction
AF:Small:贝叶斯估计和约束满足
- 批准号:
2342192 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
AF:Small:Mathematical Programming for Average-Case Problems
AF:Small:平均情况问题的数学规划
- 批准号:
1718695 - 财政年份:2017
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
AF: Medium: Collaborative Research: On the Power of Mathematical Programming in Combinatorial Optimization
AF:媒介:协作研究:论组合优化中数学规划的力量
- 批准号:
1408643 - 财政年份:2014
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
CAREER: Approximating NP-Hard Problems -Efficient Algorithms and their Limits
职业:近似 NP 难问题 - 高效算法及其局限性
- 批准号:
1149843 - 财政年份:2012
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
CAREER: Approximating NP-Hard Problems -Efficient Algorithms and their Limits
职业:近似 NP 难问题 - 高效算法及其局限性
- 批准号:
1343104 - 财政年份:2012
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
相似国自然基金
靶向Treg-FOXP3小分子抑制剂的筛选及其在肺癌免疫治疗中的作用和机制研究
- 批准号:32370966
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
化学小分子激活YAP诱导染色质可塑性促进心脏祖细胞重编程的表观遗传机制研究
- 批准号:82304478
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
靶向小胶质细胞的仿生甘草酸纳米颗粒构建及作用机制研究:脓毒症相关性脑病的治疗新策略
- 批准号:82302422
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
HMGB1/TLR4/Cathepsin B途径介导的小胶质细胞焦亡在新生大鼠缺氧缺血脑病中的作用与机制
- 批准号:82371712
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
小分子无半胱氨酸蛋白调控生防真菌杀虫活性的作用与机理
- 批准号:32372613
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
CSR: Small: Leveraging Physical Side-Channels for Good
CSR:小:利用物理侧通道做好事
- 批准号:
2312089 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
NeTS: Small: NSF-DST: Modernizing Underground Mining Operations with Millimeter-Wave Imaging and Networking
NeTS:小型:NSF-DST:利用毫米波成像和网络实现地下采矿作业现代化
- 批准号:
2342833 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
CPS: Small: NSF-DST: Autonomous Operations of Multi-UAV Uncrewed Aerial Systems using Onboard Sensing to Monitor and Track Natural Disaster Events
CPS:小型:NSF-DST:使用机载传感监测和跟踪自然灾害事件的多无人机无人航空系统自主操作
- 批准号:
2343062 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: FET: Small: Reservoir Computing with Ion-Channel-Based Memristors
合作研究:FET:小型:基于离子通道忆阻器的储层计算
- 批准号:
2403559 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
政治参加の縮小期における政治的平等と政治資金
政治参与下降时期的政治平等与政治资本
- 批准号:
24KJ2165 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for JSPS Fellows