CIF: Small: Deep Stochastic Geometry: A New Paradigm for Wireless Network Analysis and Design
CIF:小:深度随机几何:无线网络分析和设计的新范式
基本信息
- 批准号:2007498
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The use of wireless networks is rapidly extending towards applications with strict reliability and/or latency constraints. For example, in 5G cellular systems, standards not only specify average data rates but also the minimum rates that 95% of the users should be able to achieve. Meanwhile, for vehicular safety messaging or in manufacturing, extremely high reliability under strict latency constraints is required. In contrast to these developments, the theoretical tools available for wireless network analysis and design mostly focus on network-wide averages, which makes them unsuitable for these new applications. As a result, there is an urgent need to develop a theory for networks with strict performance constraints and guarantees. This project focuses on the development of such a theory, which will allow a sharp performance analysis and enable researchers and engineers in industry to characterize the user experience much more efficiently than by lengthy and expensive simulations. Accordingly, it is expected to have a significant impact on the design of future wireless systems. In addition, it will help train future generations of students in emerging wireless technologies and analytical techniques.In view of the increasing density, irregularity, and uncertainty in the locations of wireless transceivers, a probabilistic approach to modeling and analysis that includes the network geometry as its key ingredient is warranted. Stochastic geometry is the natural mathematical tool for modeling and analysis. However, its use has been largely restricted to the derivation of average performance metrics, which do not capture the disparity in the link or user performances nor incorporate reliability or latency constraints. To address these shortcomings, this project develops a new theoretical framework, called deep stochastic geometry, that focuses on spatial distributions rather than merely averages. Deep stochastic geometry enables a direct evaluation of the performance of user or link percentiles and the performance under constraints. As such, it is a theory of guaranteed performance, in contrast to the existing theory of average performance. At the heart of the new theory are so-called meta distributions, which are distributions of conditional distributions (given the network geometry). Meta distributions naturally emerge when the different sources of randomness in a network are separated according to their time scales. The specific research activities include the development of efficient numerical methods and simulation techniques to calculate meta distributions, finding effective approximation techniques, the extension of meta distributions to joint distributions, and, finally, the combination of multiple metrics into a comprehensive approach to characterize and optimize network performance under constraints.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
无线网络的使用正在迅速扩展到具有严格可靠性和/或延迟约束的应用程序。例如,在5G蜂窝系统中,标准不仅指定了平均数据速率,还指定了95%的用户应达到的最低率。同时,对于车辆安全消息或制造业,需要在严格的延迟限制下可靠性。与这些发展相反,可用于无线网络分析和设计的理论工具主要集中于整个网络平均值,这使得它们不适合这些新应用程序。结果,迫切需要为具有严格绩效限制和保证的网络发展理论。该项目的重点是这种理论的发展,该理论将允许敏锐的性能分析,并使行业的研究人员和工程师能够比长期且昂贵的模拟更有效地表征用户体验。因此,预计将对未来无线系统的设计产生重大影响。此外,它将有助于培训新兴的无线技术和分析技术的未来学生。在无线收发器位置的密度,不规则性和不确定性的增加,一种概率的建模和分析方法,包括网络几何学在内,包括其关键成分。 随机几何形状是用于建模和分析的自然数学工具。但是,它的使用在很大程度上仅限于平均性能指标的推导,这些指标不会捕获链接或用户性能中的差异,也不会纳入可靠性或延迟约束。为了解决这些缺点,该项目开发了一个新的理论框架,称为“深层随机几何形状”,该框架着重于空间分布,而不仅仅是平均。深层随机几何形状可以直接评估用户或链接百分位数的性能以及在约束下的性能。因此,与现有的平均绩效理论相反,这是保证绩效的理论。新理论的核心是所谓的元分布,它们是条件分布的分布(给定网络几何形状)。当网络中不同的随机性根据其时间尺度分离时,元分布会自然出现。具体的研究活动包括开发有效的数值方法和仿真技术来计算元分布,找到有效的近似技术,将元分布扩展到联合分布向联合分布的扩展,最后,将多个指标组合为一种全面的方法,以一种在约束中表征和优化Network的范围来表征和优化NSF的范围,以反映NSF的范围,以反映NSF的范围,以反映了NSF的范围。影响审查标准。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Stochastic Geometry Analysis of Spatial-Temporal Performance in Wireless Networks: A Tutorial
- DOI:10.1109/comst.2021.3104581
- 发表时间:2021-01-01
- 期刊:
- 影响因子:35.6
- 作者:Lu, Xiao;Salehi, Mohammad;Jiang, Hai
- 通讯作者:Jiang, Hai
The Transdimensional Poisson Process for Vehicular Network Analysis
- DOI:10.1109/twc.2021.3089553
- 发表时间:2021-11
- 期刊:
- 影响因子:10.4
- 作者:J. Jeyaraj;M. Haenggi;A. Sakr;Hongsheng Lu
- 通讯作者:J. Jeyaraj;M. Haenggi;A. Sakr;Hongsheng Lu
Joint Spatial-Propagation Modeling of Cellular Networks Based on the Directional Radii of Poisson Voronoi Cells
基于泊松沃罗诺伊单元方向半径的蜂窝网络联合空间传播建模
- DOI:10.1109/twc.2020.3048646
- 发表时间:2021
- 期刊:
- 影响因子:10.4
- 作者:Feng, Ke;Haenggi, Martin
- 通讯作者:Haenggi, Martin
Cox Models for Vehicular Networks: SIR Performance and Equivalence
- DOI:10.1109/twc.2020.3023914
- 发表时间:2021-01
- 期刊:
- 影响因子:10.4
- 作者:J. Jeyaraj;M. Haenggi
- 通讯作者:J. Jeyaraj;M. Haenggi
The SINR Meta Distribution in Poisson Cellular Networks
泊松蜂窝网络中的 SINR 元分布
- DOI:10.1109/lwc.2021.3068321
- 发表时间:2021
- 期刊:
- 影响因子:6.3
- 作者:Feng, Ke;Haenggi, Martin
- 通讯作者:Haenggi, Martin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Martin Haenggi其他文献
On the Impact of Cooperation on Local Delay and Energy Efficiency in Poisson Networks
泊松网络中合作对局部时延和能量效率的影响
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:6.3
- 作者:
Libin Liu;Yi Zhong;Wenyi Zhang;Martin Haenggi - 通讯作者:
Martin Haenggi
A Novel Approximate Antenna Pattern for Directional Antenna Arrays
一种新型的定向天线阵列近似天线方向图
- DOI:
10.1109/lwc.2018.2829741 - 发表时间:
2018-04 - 期刊:
- 影响因子:6.3
- 作者:
Na Deng;Martin Haenggi - 通讯作者:
Martin Haenggi
The End-to-End Performance of Rateless Codes in Poisson Bipolar and Cellular Networks
泊松双极和蜂窝网络中无速率码的端到端性能
- DOI:
10.1109/tcomm.2019.2934850 - 发表时间:
2019-11 - 期刊:
- 影响因子:8.3
- 作者:
Na Deng;Martin Haenggi - 通讯作者:
Martin Haenggi
The Energized Point Process as a Model for Wirelessly Powered Communication Networks
通电点过程作为无线供电通信网络的模型
- DOI:
10.1109/tgcn.2020.2980884 - 发表时间:
2020-09 - 期刊:
- 影响因子:4.8
- 作者:
Na Deng;Martin Haenggi - 通讯作者:
Martin Haenggi
The Meta Distribution of the SIR for Cellular Networks With Power Control
带功率控制的蜂窝网络 SIR 的元分布
- DOI:
10.1109/tcomm.2017.2780218 - 发表时间:
2017-02 - 期刊:
- 影响因子:8.3
- 作者:
王元杰;Martin Haenggi;谈振辉 - 通讯作者:
谈振辉
Martin Haenggi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Martin Haenggi', 18)}}的其他基金
CIF: Small:Toward a Stochastic Geometry for Cellular Systems
CIF:小:走向蜂窝系统的随机几何
- 批准号:
1525904 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CIF: Small:Interference Engineering in Wireless Systems
CIF:小型:无线系统中的干扰工程
- 批准号:
1216407 - 财政年份:2012
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Virtual Full-Duplex Wireless Networking
合作研究:虚拟全双工无线网络
- 批准号:
1231806 - 财政年份:2012
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
NeTS: Small: Theory and Practice of Coooperative Wireless Networks
NeTS:小型:协作无线网络的理论与实践
- 批准号:
1016742 - 财政年份:2010
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Geometric Analysis of Large Wireless Networks: Interference, Outage, and Delay
大型无线网络的几何分析:干扰、中断和延迟
- 批准号:
0728763 - 财政年份:2007
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Applications of Random Geometric Graphs to Large Ad Hoc Wireless Networks
协作研究:随机几何图在大型自组无线网络中的应用
- 批准号:
0505624 - 财政年份:2005
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Modeling and Managing Uncertainty in Wireless Ad Hoc and Sensor Networks
职业:无线自组网和传感器网络中的不确定性建模和管理
- 批准号:
0447869 - 财政年份:2005
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
SENSORS: Theory and Practice of Sensor Network Architectures
传感器:传感器网络架构的理论与实践
- 批准号:
0329766 - 财政年份:2003
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
仿深共晶溶剂小分子类低温粘合剂的设计制备及粘附机制研究
- 批准号:22308299
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
活体自组装超小下转换纳米颗粒用于肿瘤深组织的近红外二区成像
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
活体自组装超小下转换纳米颗粒用于肿瘤深组织的近红外二区成像
- 批准号:22204018
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
仅用光学序列图像的深空小天体探测全程自主相对导航方法及实验技术
- 批准号:U20B2055
- 批准年份:2020
- 资助金额:258 万元
- 项目类别:联合基金项目
M2型小胶质细胞源外泌体在深低温低流量术后脑损伤中的作用及机制研究
- 批准号:82000303
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
相似海外基金
CIF: Small: MoDL: Interpreting Deep-Learned Error-Correcting Codes
CIF:小型:MoDL:解释深度学习纠错码
- 批准号:
2240532 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Deep Sparse Models: Analysis and Algorithms
合作研究:CIF:小型:深度稀疏模型:分析和算法
- 批准号:
2240708 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CIF: Small: Interpretable Machine Learning based on Deep Neural Networks: A Source Coding Perspective
CIF:小:基于深度神经网络的可解释机器学习:源编码视角
- 批准号:
2205004 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CIF: Small: Deep Stochasticity for Private Collaborative Deep Learning
CIF:小:私人协作深度学习的深度随机性
- 批准号:
2215088 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Deep Sparse Models: Analysis and Algorithms
合作研究:CIF:小型:深度稀疏模型:分析和算法
- 批准号:
2007649 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant