Collaborative Research: CNS Core: Small: Robust Resource Planning and Orchestration to Satisfy End-to-End SLA Requirements in Mobile Edge Networks

协作研究:CNS 核心:小型:强大的资源规划和编排,以满足移动边缘网络中的端到端 SLA 要求

基本信息

  • 批准号:
    2007391
  • 负责人:
  • 金额:
    $ 14.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2023-09-30
  • 项目状态:
    已结题

项目摘要

Mobile edge computing has emerged to address the long end-to-end latency, low throughput, and unpredictability of cloud computing as an Internet-based service when supporting modern mobile applications. Nevertheless, the lack of performance guarantees in the form of service-level agreements (SLAs) can lead to performance degradation of critical applications, rendering them incompetent or unsafe to use. Due to the high dynamics in the mobile environment, the edge provider can incur substantial financial risks for providing SLA guarantees that could be violated. This discourages edge providers from providing SLA guarantees without first understanding and being able to control the associated risks. This project seeks to develop tools that help the edge provider to quantify and minimize the risks associated with providing edge SLA guarantees on key performance metrics through resource planning and orchestration. This project will significantly advance our knowledge on the risk factors in edge computing and give rise to new frontiers in edge computing research. Also, this project will enable and enhance life-changing edge applications such as mobile vision and autonomous driving, promote investment and expedite development in the edge computing industry, train highly qualified personnel for the future computing workforce, and broaden awareness and interest in edge computing through curriculum development and research dissemination.This project will lay the theoretical and algorithmic foundation of comprehensive risk modeling and optimization for providing edge SLA guarantees. This project combines a realistic performance model of mobile edge applications with the established theory of risk management in portfolio management and develops efficient algorithms for risk assessment and optimization through stochastic optimization, convex optimization, sampling techniques, approximations, and learning-based methods. Specifically, this project makes the following technical contributions: 1) development and validation of a realistic performance and SLA model for mobile edge computing applications, 2) modeling and optimization of three risk measures (risk probability, value-at-risk, and conditional value-at-risk) for single-user risk-aware edge resource orchestration, 3) modeling and optimization for multi-user single-node risk-aware edge resource orchestration, and 4) modeling and optimization for multi-user multi-node risk-aware edge resource provisioning. All research outcomes will be evaluated with testbed and/or large-scale simulations with public traces, and will be made publicly available on the PIs' websites to promote result reproduction and future research advancements along the line.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
移动边缘计算已经出现,以解决云计算作为基于Internet的服务的长端到端延迟,低吞吐量和不可预测性的性能。然而,缺乏服务级协议形式的性能保证(SLA)可能会导致关键应用程序的性能下降,从而使它们无能或不安全使用。由于移动环境中的高动力,Edge提供商可能会遇到实质性的财务风险,以提供可能违反的SLA保证。这阻止边缘提供商提供SLA保证,而无需先了解并能够控制相关风险。该项目旨在开发工具,以帮助边缘提供商量化和最大程度地减少与Edge SLA通过资源计划和编排为关键绩效指标提供的风险。该项目将大大提高我们对边缘计算中风险因素的了解,并引起边缘计算研究中的新边界。 Also, this project will enable and enhance life-changing edge applications such as mobile vision and autonomous driving, promote investment and expedite development in the edge computing industry, train highly qualified personnel for the future computing workforce, and broaden awareness and interest in edge computing through curriculum development and research dissemination.This project will lay the theoretical and algorithmic foundation of comprehensive risk modeling and optimization for providing edge SLA guarantees.该项目将移动边缘应用程序的现实性能模型与投资组合管理中的风险管理理论结合在一起,并通过随机优化,凸优化,采样技术,近似和基于学习的方法来开发有效的风险评估和优化算法。具体而言,该项目做出以下技术贡献:1)用于移动边缘计算应用程序的现实性能和SLA模型的开发和验证,2)对三种风险措施的建模和优化(风险概率,价值,价值风险,价值和有条件的价值风险,以及单用户自动化的边缘资源策划和优化的单位型号和优化的单位纽扣,3)多用户多节点风险感知的边缘资源提供。所有研究成果将通过具有公共痕迹的测试床和/或大型模拟进行评估,并将在PIS的网站上公开提供,以促进结果繁殖和未来的研究进步。该奖项反映了NSF的法定任务,并通过基金会的知识优点和广泛的影响来评估NSF的法定任务。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
VeriEdge: Verifying and Enforcing Service Level Agreements for Pervasive Edge Computing
VeriEdge:验证和执行普适边缘计算的服务级别协议
Principles and Practices for Application-Network Co-Design in Edge Computing
边缘计算应用网络协同设计的原则与实践
  • DOI:
    10.1109/mnet.128.2200430
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    9.3
  • 作者:
    Yu, Ruozhou;Xue, Guoliang
  • 通讯作者:
    Xue, Guoliang
Data-Driven Edge Resource Provisioning for Inter-Dependent Microservices with Dynamic Load
FedAegis: Edge-Based Byzantine-Robust Federated Learning for Heterogeneous Data
Edge-Assisted Collaborative Perception in Autonomous Driving: A Reflection on Communication Design
自动驾驶中的边缘辅助协作感知:对通信设计的反思
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ruozhou Yu其他文献

Dynamic Queuing Analysis and Buffer Management for Entanglement Swapping Buffers with Noise
带有噪声的纠缠交换缓冲区的动态排队分析和缓冲区管理

Ruozhou Yu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ruozhou Yu', 18)}}的其他基金

CAREER: WolfPack: An Application-Network Co-Design Framework for Performance-Guaranteed Real-time Applications at the Network Edge
职业:WolfPack:用于网络边缘性能保证的实时应用程序的应用程序网络协同设计框架
  • 批准号:
    2045539
  • 财政年份:
    2021
  • 资助金额:
    $ 14.25万
  • 项目类别:
    Continuing Grant
SHF: Small: Inter-Request Workflow and Dataflow in Web Applications: a Modeling Framework and its Applications
SHF:小型:Web 应用程序中的请求间工作流和数据流:建模框架及其应用程序
  • 批准号:
    2008056
  • 财政年份:
    2020
  • 资助金额:
    $ 14.25万
  • 项目类别:
    Standard Grant

相似国自然基金

IL-17A通过STAT5影响CNS2区域甲基化抑制调节性T细胞功能在银屑病发病中的作用和机制研究
  • 批准号:
    82304006
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
miR-20a通过调控CD4+T细胞焦亡促进CNS炎性脱髓鞘疾病的发生及机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
miR-20a通过调控CD4+T细胞焦亡促进CNS炎性脱髓鞘疾病的发生及机制研究
  • 批准号:
    82201491
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
血浆CNS来源外泌体中寡聚磷酸化α-synuclein对PD病程的提示研究
  • 批准号:
    82101506
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于脑微血管内皮细胞模型的毒力岛4在单增李斯特菌CNS炎症中的作用及机制研究
  • 批准号:
    32160834
  • 批准年份:
    2021
  • 资助金额:
    35 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
  • 批准号:
    2230945
  • 财政年份:
    2023
  • 资助金额:
    $ 14.25万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Movement of Computation and Data in Splitkernel-disaggregated, Data-intensive Systems
合作研究:CNS 核心:媒介:Splitkernel 分解的数据密集型系统中的计算和数据移动
  • 批准号:
    2406598
  • 财政年份:
    2023
  • 资助金额:
    $ 14.25万
  • 项目类别:
    Continuing Grant
Collaborative Research: CNS Core: Small: SmartSight: an AI-Based Computing Platform to Assist Blind and Visually Impaired People
合作研究:中枢神经系统核心:小型:SmartSight:基于人工智能的计算平台,帮助盲人和视障人士
  • 批准号:
    2418188
  • 财政年份:
    2023
  • 资助金额:
    $ 14.25万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Reconfigurable Kernel Datapaths with Adaptive Optimizations
协作研究:CNS 核心:中:具有自适应优化的可重构内核数据路径
  • 批准号:
    2345339
  • 财政年份:
    2023
  • 资助金额:
    $ 14.25万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
  • 批准号:
    2225578
  • 财政年份:
    2023
  • 资助金额:
    $ 14.25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了