CNS Core: Small: New Caching Paradigms for Distributed and Dynamic Networks

CNS 核心:小型:分布式和动态网络的新缓存范例

基本信息

  • 批准号:
    2007231
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

Over the last few decades, Content Distribution Networks (CDNs) have been used to cache data of popular interest closer to the end-users in order to make them rapidly accessible whenever requested. This results in substantial time savings from an end-user’s perspective when retrieving popular content like video feeds. It also helps to reduce the bandwidth demands on the overall network. This is achieved by developing efficient mechanisms that employ popularity-based indicators to store or evict content from the cache memory. However, with the advent of emerging technologies such as the Internet-of-Things (IoT) and cyberphysical systems, the dynamics and requirements of networks are witnessing significant changes that call for fundamentally new caching solutions that extend beyond the purview of CDNs to the wireless edge and the end-user devices. These new networks will be composed of a large number of highly mobile devices (e.g., mobile phones) with intermittent, delay-sensitive, and personalized demand to be supported over resource-limited wireless channels. To address these new challenges, this project undertakes the task of democratizing caching by proposing a systematic methodology that encompasses the wireless edge and the end-users in the design of provably good caching strategies for increasingly dynamic and disparate networks. This project is motivated by the observation that caching within and at the endpoints of networks must differ fundamentally from each other, as well as from existing caching strategies optimized for today's CDNs. In particular, the project identifies and systematically investigates complementary scenarios that must employ different caching principles based on the position of the memory space and the nature of demand it receives. In each scenario, the project takes a holistic approach to the design to incorporate generation and demand dynamics, wireless communication capabilities and limitations, variety of uncertainties in the traffic and environment, and quality-of-service requirements. This research is multi-disciplinary and will bring together elements from queueing, scheduling, anomaly detection, coding, learning and control theories towards the design of integrated and adaptive caching solutions. This interdisciplinary research will be integrated into the curricula and will help train the next generation of engineers and academicians with the tools it takes to succeed in solving increasingly complex and challenging problems. The investigators are committed to recruit women and under-represented minority students in their research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在过去的几十年中,内容分布网络(CDN)已被用来缓存流行的兴趣数据,以使最终用户更接近最终用户,以便在要求时迅速访问。从最终用户的角度来看,这可以节省大量时间,以检索视频提要(例如视频feed)的流行内容。它还有助于减少整个网络上的带宽需求。这是通过开发有效的机制来实现的,这些机制采用流行的指标来存储或驱逐缓存内存中的内容。但是,随着新兴技术(例如Things Internet(IoT)和网络物理系统)的发展,网络的动态和需求正在见证重大变化,这些变化要求从根本上进行新的缓存解决方案,这些解决方案超出了CDN的范围,这些解决方案超出了无线边缘和最终用户设备。这些新网络将由大量高度移动设备(例如,移动电话)组成,并具有间歇性,延迟敏感和个性化需求,以在资源有限的无线频道上得到支持。为了应对这些新的挑战,该项目通过提出一种系统的方法来承担民主化缓存的任务,该方法涵盖了无线边缘和最终用户,以设计适当的良好的加速策略,以越来越多地动态和散落的网络。该项目的激励是,观察到网络内部和处于网络端点的缓存必须基本上彼此不同,以及针对当今CDN优化的现有缓存策略。特别是,该项目确定并系统地研究了必须根据记忆空间的位置和所收到的需求性质采用不同的缓存原则的完整场景。在每种情况下,该项目都采取了整体方法,以结合生成和需求动态,无线通信功能和局限性,交通和环境中的各种不确定性以及服务质量要求。这项研究是多学科的,将从排队,调度,异常检测,编码,学习和控制理论来汇总综合和适应性缓存解决方案的理论。这项跨学科研究将纳入课程中,并将通过成功解决越来越复杂和挑战问题的工具来帮助培训下一代工程师和院士。调查人员致力于在其研究中招募妇女和代表性不足的少数族裔学生。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响审查标准,被视为通过评估来获得珍贵的支持。

项目成果

期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Flexible Distributed Stochastic Optimization Framework for Concurrent Tasks in Processing Networks
  • DOI:
    10.1109/tnet.2021.3078054
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zai Shi;A. Eryilmaz
  • 通讯作者:
    Zai Shi;A. Eryilmaz
Counterintuitive Characteristics of Optimal Distributed LRU Caching Over Unreliable Channels
Group-Fair Online Allocation in Continuous Time
连续时间团体公平在线分配
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cayci, S;Gupta, S;Eryilmaz, A
  • 通讯作者:
    Eryilmaz, A
Asymptotically optimal load balancing in large-scale heterogeneous systems with multiple dispatchers
具有多个调度器的大规模异构系统中的渐近最优负载均衡
  • DOI:
    10.1016/j.peva.2020.102146
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Zhou, Xingyu;Shroff, Ness;Wierman, Adam
  • 通讯作者:
    Wierman, Adam
Delay Gain Analysis of Wireless Multicasting for Content Distribution
  • DOI:
    10.1109/tnet.2020.3039634
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Abolhassani;John Tadrous;A. Eryilmaz
  • 通讯作者:
    B. Abolhassani;John Tadrous;A. Eryilmaz
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ness Shroff其他文献

Ness Shroff的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ness Shroff', 18)}}的其他基金

Collaborative Research: NeTS: Medium: Black-box Optimization of White-box Networks: Online Learning for Autonomous Resource Management in NextG Wireless Networks
合作研究:NeTS:中:白盒网络的黑盒优化:下一代无线网络中自主资源管理的在线学习
  • 批准号:
    2312836
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
AI Institute for Future Edge Networks and Distributed Intelligence (AI-EDGE)
未来边缘网络和分布式智能人工智能研究所 (AI-EDGE)
  • 批准号:
    2112471
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Cooperative Agreement
Collaborative Research: CNS Core: Medium: Analytics and Online Optimization at Scale for Cellular Networks
合作研究:CNS 核心:中:蜂窝网络大规模分析和在线优化
  • 批准号:
    2106933
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Information Freshness in Scalable and Energy Constrained Machine to Machine Wireless Networks
合作研究:CNS 核心:中:可扩展且能量受限的机器对机器无线网络中的信息新鲜度
  • 批准号:
    2106932
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
RAPID: Acoustic Communications and Sensing for COVID-19 Data Collection
RAPID:用于 COVID-19 数据收集的声学通信和传感
  • 批准号:
    2028547
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Combating Latency and Disconnectivity in mmWave Networks: From Theory to Implementation
合作研究:CNS 核心:中:对抗毫米波网络中的延迟和断开连接:从理论到实施
  • 批准号:
    1955535
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CNS Core: Medium: Collaborative: Exploring and Exploiting Learning for Efficient Network Control: Non-Stationarity, Inter-Dependence, and Domain-Knowledge
CNS 核心:中:协作:探索和利用学习实现高效网络控制:非平稳性、相互依赖和领域知识
  • 批准号:
    1901057
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
ICN-WEN: Collaborative Research: SPLICE: Secure Predictive Low-Latency Information Centric Edge for Next Generation Wireless Networks
ICN-WEN:协作研究:SPLICE:下一代无线网络的安全预测低延迟信息中心边缘
  • 批准号:
    1719371
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CSR: NeTS: Small: Theoretical Foundations for Cache Networks: Performance Models, Algorithms, and Applications
CSR:NeTS:小型:缓存网络的理论基础:性能模型、算法和应用
  • 批准号:
    1717060
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
NeTS: Large: Collaborative Research: Practical Foundations for Networking with Many-Antenna Base Stations
NetS:大型:协作研究:多天线基站联网的实用基础
  • 批准号:
    1518829
  • 财政年份:
    2015
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于NRF2调控KPNB1促进PD-L1核转位介导非小细胞肺癌免疫治疗耐药的机制研究
  • 批准号:
    82303969
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
小胶质细胞调控外侧隔核-腹侧被盖区神经环路介导社交奖赏障碍的机制研究
  • 批准号:
    82304474
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肾去交感神经术促进下丘脑室旁核小胶质细胞M2型极化减轻心衰损伤的机制研究
  • 批准号:
    82370387
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
空间邻近标记技术研究莱茵衣藻蛋白核小管与碳浓缩机制的潜在关系
  • 批准号:
    32300220
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
polyG蛋白聚集体诱导小胶质细胞活化在神经元核内包涵体病中的作用及机制研究
  • 批准号:
    82301603
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CNS Core: Small: Core Scheduling Techniques and Programming Abstractions for Scalable Serverless Edge Computing Engine
CNS Core:小型:可扩展无服务器边缘计算引擎的核心调度技术和编程抽象
  • 批准号:
    2322919
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CNS Core: Small: Network Wide Sensing by Leveraging Cellular Communication Networks
CNS 核心:小型:利用蜂窝通信网络进行全网络传感
  • 批准号:
    2343469
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
  • 批准号:
    2230945
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: SmartSight: an AI-Based Computing Platform to Assist Blind and Visually Impaired People
合作研究:中枢神经系统核心:小型:SmartSight:基于人工智能的计算平台,帮助盲人和视障人士
  • 批准号:
    2418188
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CNS Core: Small: Intelligent Fault Injection to Expose and Reproduce Production-Grade Bugs in Cloud Systems
CNS 核心:小型:智能故障注入以暴露和重现云系统中的生产级错误
  • 批准号:
    2317698
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了