OAC Core: Small: Efficient and scalable tools for design and analysis of active matter systems

OAC 核心:小型:用于设计和分析活性物质系统的高效且可扩展的工具

基本信息

  • 批准号:
    2007181
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

The term "active matter" denotes a novel class of non-equilibrium materials made up of constituents that are self-driven, powered by converting the energy in the environment (typically chemical energy) to mechanical work (locomotion or swimming). They are abundant in nature, from the animate to the inanimate; this terminology can be used to describe flocks of birds or swarms of bacteria that self-organize to chemically active colloidal particles. The common characteristics of active matter are collective motion, anomalous fluctuations, and mechanical properties that cannot be explained by equilibrium physics. To date, most studies have been on small systems or a limited number of particles with the goal of understanding the underlying behavior with over-simplified property descriptors. This project seeks to develop a framework that will enable both understanding and exploiting the properties of active matter systems; to take this engineering leap forward, the project team intends to develop a publicly available virtual laboratory, the Fast Active Matter Simulator (FAMS), that will enable prototyping of novel active matter systems via efficient discrete particle methods. To enable widespread dissemination, the project will create local K-12 outreach programs, leverage REU opportunities for undergraduate students, recruit under-represented students, and incorporate computational techniques into our undergraduate and graduate curriculum. The proposed research will transform the state-of-the-art in active matter research, from understanding simple canonical systems to design tools that would enable engineering/manipulation of active matter to build systems. To do so, one needs to account for the morphology of particles, ambient environment, external forces, etc. As the problem is inherently multiscale, one needs to develop rigorous methods that are efficient across these scales, and fully resolve the long- and short-range interactions by incorporating the details of particle shapes, complex geometries of obstacles, and confinement boundaries. To realize the above objectives, the project team will perform research and development in four different areas; (a) higher-order representation of both geometry and physics on the geometry via isogeometric methods so as to guarantee fidelity without high cost, (b) casting these representations within a boundary integral equation based framework, (c) integrating with a set of acceleration techniques to reduce memory and computational bottlenecks to facilitate analysis of realistic aggregates, and (d) integration with existing libraries to leverage parallel algorithms for linear algebra (dense and sparse). The project will use this framework to characterize material properties and collective dynamics. These new methods will transform the state-of-the-art in active matter research, from understanding simple canonical systems to building tools that would enable engineering/manipulation of active matter to build virtual “living” systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
术语“主动物质”表示由由自动驱动的构成组成的新型非平衡材料,通过将环境中的能量(通常是化学能)转换为机械工作(运动或游泳)。从动画到无生命的,它们本质上丰富。该术语可用于描述鸟类或成群的细菌,这些细菌会自组织化学活性胶体颗粒。主动物质的共同特征是集体运动,异常波动和机械特性,这些特性无法通过等效物理学来解释。迄今为止,大多数研究都是针对小型系统或有限数量的颗粒,目的是使用过度简化的属性描述符理解潜在的行为。该项目旨在开发一个框架,该框架将同时理解和利用主动物质系统的属性;为了实现这一工程发展,项目团队打算开发公开可用的虚拟实验室,即快速活跃的物质模拟器(FAMS),该实验室将通过有效的离散粒子方法来实现新型活性物质系统的原型。为了实现广泛的传播,该项目将创建本地K-12外展计划,为本科生提供REU机会,招募人数不足的学生,并将计算技术纳入我们的本科和研究生课程。拟议的研究将改变主动物质研究的最新技术,从了解简单的规范系统到设计可以使工程/操纵活动物质来构建系统的工具。为此,人们需要考虑颗粒,环境环境,外部力量等的形态。由于问题本质上是多尺度的,因此需要开发严格的方法,这些方法在这些尺度上有效,并通过融合粒子形状的细节,复杂的障碍物几何形状,以及障碍物的复杂几何形状以及牢固的边界。为了实现上述目标,项目团队将在四个不同领域进行研发。 (a)通过等几何方法在几何学上对几何和物理学的高阶表示,以确保没有高成本的忠诚度,((b)将这些表示形式施放在基于边界积分方程的框架中,(c)与一组加速技术集成,以减少与现有的集成的记忆和计算量的分析,以使现有的集成者和计算的分析(均匀分析)集成(and),并集成了现实的集成((对于线性代数(密集和稀疏)。该项目将使用此框架来表征材料属性和集体动态。这些新方法将改变主动物质研究的最新方法,从了解简单的规范系统到构建工具,这些工具可以使工程/操纵有效物质建立虚拟的“生活”系统。这项奖项反映了NSF的法定任务,并通过使用基金会的知识分子和更广泛的影响来审查审查标准来通过评估来诚实地通过评估来诚实。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tong Gao其他文献

A novel core-shell TiCx particle by modifying TiCx with B element and the preparation of the (TiCx +AlN)/Al composite
B元素改性TiCx新型核壳TiCx粒子及(TiCx AlN)/Al复合材料的制备
  • DOI:
    10.1016/j.jallcom.2021.162448
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Lei Ren;Tong Gao;Jinfeng Nie;Guiliang Liu;Xiangfa Liu
  • 通讯作者:
    Xiangfa Liu
In-situ synthesis of nano SiC particles in Al–Si–C system at 750°C
Al-Si-C体系750℃原位合成纳米SiC颗粒
Tensored Generalized Hough Transform for Object Detection in Remote Sensing Images
用于遥感图像中目标检测的张量广义霍夫变换
An all-movable rudder designed by thermo-elastic topology optimization and manufactured by additive manufacturing
采用热弹性拓扑优化设计、增材制造制造的全动舵
  • DOI:
    10.1016/j.compstruc.2020.106405
  • 发表时间:
    2021-01
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Longlong Song;Tong Gao;Lei Tang;Xinxin Du;Jihong Zhu;Ye Lin;Guanghui Shi;Hui Liu;Guannan Zhou;Weihong Zhang
  • 通讯作者:
    Weihong Zhang
Platelet-activating factor induces the stemness of ovarian cancer cells via the PAF/PAFR signaling pathway
血小板激活因子通过PAF/PAFR信号通路诱导卵巢癌细胞的干细胞性
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tong Gao;Ran Zhao;Liangqing Yao;Congjian Xu;Qing Cong;Wei Jiang
  • 通讯作者:
    Wei Jiang

Tong Gao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tong Gao', 18)}}的其他基金

Maneuvering Bioinspired Soft Microrobots in Anisotropic Complex Fluids
在各向异性复杂流体中操纵仿生软微型机器人
  • 批准号:
    2323917
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Unveiling the Stability, Rheology, and Topology of Active Fluids
职业生涯:揭示活性流体的稳定性、流变性和拓扑结构
  • 批准号:
    1943759
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Multiscale cardiac fluid-structure-growth model
多尺度心脏液体结构生长模型
  • 批准号:
    1702987
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: Multiscale Study of Active Cellular Matter: Simulation, Modeling, and Analysis
合作研究:活性细胞物质的多尺度研究:模拟、建模和分析
  • 批准号:
    1619960
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

基于NRF2调控KPNB1促进PD-L1核转位介导非小细胞肺癌免疫治疗耐药的机制研究
  • 批准号:
    82303969
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
小胶质细胞调控外侧隔核-腹侧被盖区神经环路介导社交奖赏障碍的机制研究
  • 批准号:
    82304474
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肾去交感神经术促进下丘脑室旁核小胶质细胞M2型极化减轻心衰损伤的机制研究
  • 批准号:
    82370387
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
空间邻近标记技术研究莱茵衣藻蛋白核小管与碳浓缩机制的潜在关系
  • 批准号:
    32300220
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
polyG蛋白聚集体诱导小胶质细胞活化在神经元核内包涵体病中的作用及机制研究
  • 批准号:
    82301603
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: OAC Core: Small: Anomaly Detection and Performance Optimization for End-to-End Data Transfers at Scale
协作研究:OAC 核心:小型:大规模端到端数据传输的异常检测和性能优化
  • 批准号:
    2412329
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
OAC Core: SHF: SMALL: ICURE -- In-situ Analytics with Compressed or Summary Representations for Extreme-Scale Architectures
OAC 核心:SHF:SMALL:ICURE——针对超大规模架构的压缩或摘要表示的原位分析
  • 批准号:
    2333899
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
OAC Core: SHF: SMALL: ICURE -- In-situ Analytics with Compressed or Summary Representations for Extreme-Scale Architectures
OAC 核心:SHF:SMALL:ICURE——针对超大规模架构的压缩或摘要表示的原位分析
  • 批准号:
    2007775
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS core: OAC core: Small: New Techniques for I/O Behavior Modeling and Persistent Storage Device Configuration
合作研究: CNS 核心:OAC 核心:小型:I/O 行为建模和持久存储设备配置新技术
  • 批准号:
    2008324
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Small: Anomaly Detection and Performance Optimization for End-to-End Data Transfers at Scale
协作研究:OAC 核心:小型:大规模端到端数据传输的异常检测和性能优化
  • 批准号:
    2007789
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了