CAREER: A Non-local Mathematical and Computational Paradigm for Failure in Unsaturated Soils: Integrated Research and Education through High Performance Computing
职业:非饱和土失效的非局部数学和计算范式:通过高性能计算进行综合研究和教育
基本信息
- 批准号:1944009
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This Faculty Early Career Development Program (CAREER) grant will address fundamental knowledge gaps preventing the accurate characterization of multiphysics conditions driving failure (e.g., shear bands/cracks) of unsaturated soils. Unsaturated soil mechanics plays a vital role in geohazard assessment, as well as energy, environmental, and coastal geotechnics. Advances in these fields are hindered by unsaturated soil failure mechanisms that are poorly characterized and thus difficult to predict and mitigate. Such failures involve coupled multiphysics processes and arbitrary shear bands/cracks at multiple space and time scales. With recent advances in high-performance computing (HPC), computational modeling is becoming increasingly crucial for advancing our ability to characterize, predict, and mitigate such failures. This powerful tool must be coupled with new and robust numerical methods that are designed to harness and optimize this capability. This CAREER project will develop a novel non-local mathematical and computational paradigm for modeling failure phenomena in non-isothermal unsaturated soils through HPC. The hypothesis is that material heterogeneities and environmental loads are the critical triggers for failures (shear bands/cracks) in unsaturated soils, and that the prediction of such failures can be achieved via coupling HPC with new physics-based numerical tools. The rigorous integration of unsaturated soil mechanics, interface physics, poromechanics, thermodynamics, non-local vector calculus, and HPC can potentially revolutionize our modeling techniques for multiscale, multiphysics problems. Integrated research and educational activities through HPC will foster the interest of high-school and underrepresented students in STEM educations and careers and engage graduate students in globally collaborative research and effective dissemination of scientific knowledge to a diverse audience. The cultivated diverse collaboration network, including NSF Centers, U.S. national laboratories, leading consulting firms, and top global institutions, will increase the national and global impacts of this project and has the added benefit of exposing students to a dynamic team.The research goal of this CAREER grant is to better characterize and predict failures in unsaturated soils under environmental loads. This project will (i) formulate, implement, and validate a novel multiphysics peri-poromechanics (PPM) paradigm using non-local vector calculus and basic principles of physics and mechanics, and (ii) conduct extensive computational experiments through HPC. The new knowledge generated by this project includes a fundamental mechanistic understanding of multiphysics conditions driving failures of unsaturated soils that is crucial for building sustainable and resilient civil infrastructure. A significant outcome of this project is expected to be a novel multiphysics PPM paradigm that can potentially transform mathematical and computational modeling of failures in unsaturated soils due to its physical and mathematical consistency across multiple spatial scales. Original contributions expected are: (i) A novel physically, mathematically and computationally consistent paradigm for better modeling soil multiphysics; (ii) Next-generation non-local constitutive models for unsaturated soils; (iii) A validated open-source HPC tool for predicting unsaturated soil failures; and (iv) A new mechanistic understanding of multiphysics conditions driving failures in unsaturated soils. The educational plan will challenge and prepare next-generation engineers and scientists with a diverse knowledge base by integrating fundamental principles of mathematics, physics, mechanics, and HPC. This project will implement a series of initiatives, including two course modules on key concepts in unsaturated soil failure analysis and the vital role of HPC in basic scientific research, a cloud computing app, a dedicated wiki page, and NSF SimCenter and ASCE webinars.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该教师早期职业发展计划(CAREER)拨款将解决基础知识差距,从而阻碍对导致非饱和土破坏(例如剪切带/裂缝)的多物理条件进行准确表征。 非饱和土力学在地质灾害评估以及能源、环境和沿海岩土工程中发挥着至关重要的作用。这些领域的进展受到非饱和土破坏机制的阻碍,这些破坏机制的特征较差,因此难以预测和缓解。此类失效涉及耦合的多物理场过程以及多个空间和时间尺度上的任意剪切带/裂纹。随着高性能计算 (HPC) 的最新进展,计算建模对于提高我们表征、预测和缓解此类故障的能力变得越来越重要。这种强大的工具必须与旨在利用和优化这种功能的新的、强大的数值方法相结合。该职业项目将开发一种新颖的非局部数学和计算范式,用于通过 HPC 对非等温不饱和土壤中的失效现象进行建模。假设材料异质性和环境载荷是非饱和土壤失效(剪切带/裂缝)的关键触发因素,并且可以通过将 HPC 与新的基于物理的数值工具相结合来实现对此类失效的预测。非饱和土力学、界面物理、孔隙力学、热力学、非局部矢量微积分和 HPC 的严格集成可能会彻底改变我们多尺度、多物理问题的建模技术。通过 HPC 进行的综合研究和教育活动将培养高中生和代表性不足的学生对 STEM 教育和职业的兴趣,并让研究生参与全球合作研究并向不同受众有效传播科学知识。培养的多元化合作网络,包括 NSF 中心、美国国家实验室、领先的咨询公司和全球顶级机构,将增加该项目的国家和全球影响力,并具有让学生接触充满活力的团队的额外好处。这项职业资助是为了更好地描述和预测环境负荷下非饱和土壤的破坏。该项目将 (i) 使用非局部矢量微积分以及物理和力学的基本原理制定、实施和验证一种新颖的多物理场周边孔隙力学 (PPM) 范式,以及 (ii) 通过 HPC 进行广泛的计算实验。该项目产生的新知识包括对导致非饱和土壤破坏的多物理条件的基本机制理解,这对于建设可持续和有弹性的民用基础设施至关重要。该项目的一个重要成果预计将是一种新颖的多物理场 PPM 范式,由于其在多个空间尺度上的物理和数学一致性,该范式可以潜在地改变非饱和土壤失效的数学和计算模型。预期的原始贡献是:(i)一种新颖的物理、数学和计算一致的范式,用于更好地模拟土壤多物理场; (ii) 下一代非饱和土非局部本构模型; (iii) 经验证的开源 HPC 工具,用于预测非饱和土破坏; (iv) 对导致非饱和土破坏的多物理条件的新机制的理解。该教育计划将通过整合数学、物理、力学和高性能计算的基本原理,挑战并培养具有多元化知识基础的下一代工程师和科学家。该项目将实施一系列举措,包括关于非饱和土破坏分析的关键概念和 HPC 在基础科学研究中的重要作用的两个课程模块、云计算应用程序、专用维基页面以及 NSF SimCenter 和 ASCE 网络研讨会。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Computational multiphase periporomechanics for unguided cracking in unsaturated porous media
非饱和多孔介质中无导向裂纹的计算多相围孔力学
- DOI:10.1002/nme.6961
- 发表时间:2022-06
- 期刊:
- 影响因子:2.9
- 作者:Menon, Shashank;Song, Xiaoyu
- 通讯作者:Song, Xiaoyu
Molecular dynamics modeling of cracks in dry clay sheets at the nanoscale
纳米尺度干粘土片裂缝的分子动力学模拟
- DOI:10.1016/j.compgeo.2022.105037
- 发表时间:2022-12
- 期刊:
- 影响因子:5.3
- 作者:Zhang, Zhe;Song, Xiaoyu
- 通讯作者:Song, Xiaoyu
Characterizing the Impact of Temperature on Clay-Water Contact Angle in Geomaterials during Extreme Events by Deep Learning Enhanced Method
通过深度学习增强方法表征极端事件期间温度对土工材料中粘土-水接触角的影响
- DOI:10.1061/9780784483701.016
- 发表时间:2021-11
- 期刊:
- 影响因子:0
- 作者:Zhang, Zhe;Song, Xiaoyu
- 通讯作者:Song, Xiaoyu
Nanoscale crack propagation in clay with water adsorption through reactive MD modeling
通过反应 MD 建模在吸水粘土中进行纳米级裂纹扩展
- DOI:10.1002/nag.3507
- 发表时间:2023-02
- 期刊:
- 影响因子:4
- 作者:Zhang, Zhe;Song, Xiaoyu
- 通讯作者:Song, Xiaoyu
Determination of clay-water contact angle via molecular dynamics and deep-learning enhanced methods
通过分子动力学和深度学习增强方法测定粘土-水接触角
- DOI:10.1007/s11440-021-01238-1
- 发表时间:2022-02
- 期刊:
- 影响因子:5.7
- 作者:Song, Xiaoyu;Zhang, Zhe
- 通讯作者:Zhang, Zhe
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaoyu Song其他文献
Strain localization in porous materials with spatially varying density and degree of saturation
密度和饱和度空间变化的多孔材料中的应变局域化
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
R. Borja;Xiaoyu Song - 通讯作者:
Xiaoyu Song
An overview of augmented reality technology
增强现实技术概述
- DOI:
10.1088/1742-6596/1237/2/022082 - 发表时间:
2019-06-01 - 期刊:
- 影响因子:0
- 作者:
Yunqiang Chen;Qing Wang;Hong Chen;Xiaoyu Song;Hui Tang;Mengxiao Tian - 通讯作者:
Mengxiao Tian
A Hybrid Algorithm of PSO and SA for Solving JSP
求解JSP的PSO和SA混合算法
- DOI:
10.1109/fskd.2008.430 - 发表时间:
2008-10-01 - 期刊:
- 影响因子:0
- 作者:
Xiaoyu Song;Yang Cao;Chunguang Chang - 通讯作者:
Chunguang Chang
Global Trends in Adolescent Fertility, 1990-2012, in Relation to National Wealth, Income Inequalities, and Educational Expenditures.
青少年生育力的全球趋势,1990-2012 年,与国民财富、收入不平等和教育支出的关系。
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:7.6
- 作者:
J. Santelli;Xiaoyu Song;S. Garbers;Vinit Sharma;R. Viner - 通讯作者:
R. Viner
QRank: a novel quantile regression tool for eQTL discovery
QRank:一种用于 eQTL 发现的新型分位数回归工具
- DOI:
10.1093/bioinformatics/btx119 - 发表时间:
2017-07-15 - 期刊:
- 影响因子:5.8
- 作者:
Xiaoyu Song;Gen Li;Zhenwei Zhou;Xianling Wang;I. Ionita;Ying Wei - 通讯作者:
Ying Wei
Xiaoyu Song的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaoyu Song', 18)}}的其他基金
Molecular Dynamics Modeling of a Partially Saturated Clay-Water System
部分饱和粘土-水系统的分子动力学建模
- 批准号:
1659932 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
基于自监督学习的非规则网格混采数据分离与重建方法研究
- 批准号:42304125
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非晶态铜基MOFs的可控构筑及其电还原CO2制乙醇的研究
- 批准号:22368034
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
sp3非晶碳力学和热学性质的优化调控与大块体制备研究
- 批准号:12304015
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
胆固醇羟化酶CH25H非酶活依赖性促进乙型肝炎病毒蛋白Core及Pre-core降解的分子机制研究
- 批准号:82371765
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于新型深度学习算法和多组学研究策略鉴定非编码区剪接突变在肌萎缩侧索硬化症中的分子机制
- 批准号:82371878
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
CAREER: Non-Local Metamaterials and Metasurfaces for Next Generation Non-Reciprocal Acoustic Devices
职业:下一代非互易声学器件的非局域超材料和超表面
- 批准号:
2340782 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
ASHA 2: An Ethnographic Study Embedded in a Depression Treatment Trial
ASHA 2:抑郁症治疗试验中的人种学研究
- 批准号:
10746492 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
COCAINE USE AND HIV ANTIRETROVIRAL THERAPY EFFICACY IN THE CNS
可卡因的使用和 HIV 抗逆转录病毒治疗在中枢神经系统中的疗效
- 批准号:
10020179 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
COCAINE USE AND HIV ANTIRETROVIRAL THERAPY EFFICACY IN THE CNS
可卡因的使用和 HIV 抗逆转录病毒治疗在中枢神经系统中的疗效
- 批准号:
10226215 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Mechanism of intrathecal Contulakin-G induced analgesia without motor block
鞘内Contulakin-G诱导无运动阻滞镇痛机制
- 批准号:
10408115 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别: