Collaborative Research: SHF: Small: Interactive Synthesis and Repair For Robot Programs
合作研究:SHF:小型:机器人程序的交互式合成和修复
基本信息
- 批准号:2006404
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-15 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Over the past few years, robots have started to be deployed in unstructured human environments. There are hundreds of robots deployed in hospitals, hotels, and supermarkets. Unfortunately, the software that runs on robots is programmed using low-level abstractions and languages, and is hard to transfer across robots and environments. In addition robotic software requires complex control logic to ensure that robots are safe and well-behaved in all situations. Thus, robot software is extraordinarily hard to write and maintain. This research project develops tools and techniques to make robot software safer, easier to write, and easier to maintain. The intellectual merits of the project are the development of (1) techniques for fixing bugs in robot software, based on advances to automatic program repair and program synthesis; (2) abstractions for writing robot software that can automatically handle certain kinds of failures, based on new programming-language design; (3) methods for checking the correctness of robot software, based on new program-verification techniques. The project's broader significance and importance are that it helps make robot software easier to write and maintain, and cheaper, safer, and more reliable. The project encourages further research at the intersection of programming languages and robotics by publishing research results and releasing open-source software. The project also involves high-school outreach workshops to broaden participation in computing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在过去的几年里,机器人已经开始部署在非结构化的人类环境中。医院、酒店和超市部署了数百台机器人。不幸的是,在机器人上运行的软件是使用低级抽象和语言进行编程的,并且很难在机器人和环境之间传输。此外,机器人软件需要复杂的控制逻辑,以确保机器人在所有情况下都安全且表现良好。因此,机器人软件非常难以编写和维护。该研究项目开发工具和技术,使机器人软件更安全、更易于编写和维护。该项目的智力优点是开发(1)基于自动程序修复和程序合成的进步来修复机器人软件中的错误的技术; (2)基于新的编程语言设计,编写能够自动处理某些类型故障的机器人软件的抽象; (3)基于新的程序验证技术的机器人软件正确性检查方法。该项目更广泛的意义和重要性在于,它有助于使机器人软件更易于编写和维护,并且更便宜、更安全、更可靠。该项目通过发布研究成果和发布开源软件来鼓励编程语言和机器人技术交叉领域的进一步研究。该项目还涉及高中外展研讨会,以扩大对计算的参与。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Iterative Program Synthesis for Adaptable Social Navigation
适应性社交导航的迭代程序综合
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Holtz, Jarrett;Andrews, Simon;Guha, Arjun;Biswas, Joydeep
- 通讯作者:Biswas, Joydeep
SocialGym: A Framework for Benchmarking Social Robot Navigation
- DOI:10.1109/iros47612.2022.9982021
- 发表时间:2021-09
- 期刊:
- 影响因子:0
- 作者:Jarrett Holtz;Joydeep Biswas
- 通讯作者:Jarrett Holtz;Joydeep Biswas
IV-SLAM: Introspective Vision for Simultaneous Localization and Mapping
- DOI:
- 发表时间:2020-08
- 期刊:
- 影响因子:0
- 作者:Sadegh Rabiee;Joydeep Biswas
- 通讯作者:Sadegh Rabiee;Joydeep Biswas
Robot Action Selection Learning via Layered Dimension Informed Program Synthesis
- DOI:
- 发表时间:2020-08
- 期刊:
- 影响因子:0
- 作者:Jarrett Holtz;Arjun Guha;Joydeep Biswas
- 通讯作者:Jarrett Holtz;Arjun Guha;Joydeep Biswas
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joydeep Biswas其他文献
SOCIALGYM 2.0: Simulator for Multi-Robot Learning and Navigation in Shared Human Spaces
SOCIALGYM 2.0:共享人类空间中的多机器人学习和导航模拟器
- DOI:
10.1609/aaai.v38i21.30562 - 发表时间:
2024 - 期刊:
- 影响因子:1.8
- 作者:
Rohan Chandra;Zayne Sprague;Joydeep Biswas - 通讯作者:
Joydeep Biswas
Five Years of SSL-Vision - Impact and Development
SSL-Vision 五年 - 影响与发展
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
S. Zickler;Tim Laue;José Angelo Gurzoni;Oliver Birbach;Joydeep Biswas;M. Veloso - 通讯作者:
M. Veloso
The Quest For "Always-On" Autonomous Mobile Robots
追求“永远在线”的自主移动机器人
- DOI:
10.24963/ijcai.2019/893 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Joydeep Biswas - 通讯作者:
Joydeep Biswas
Learning to Optimize Autonomy in Competence-Aware Systems
学习优化能力感知系统中的自主性
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Connor Basich;Justin Svegliato;K. H. Wray;S. Witwicki;Joydeep Biswas;S. Zilberstein - 通讯作者:
S. Zilberstein
Automatic Failure Recovery for End-User Programs on Service Mobile Robots
服务移动机器人上最终用户程序的自动故障恢复
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Jenna Claire Hammond;Joydeep Biswas;Arjun Guha - 通讯作者:
Arjun Guha
Joydeep Biswas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joydeep Biswas', 18)}}的其他基金
CAREER: Robust Perception and Customization for Long-Term Autonomous Mobile Service Robots
职业:长期自主移动服务机器人的鲁棒感知和定制
- 批准号:
2046955 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Introspective Perception and Planning for Long-Term Autonomy
合作研究:RI:中:长期自治的内省感知和规划
- 批准号:
1954778 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
相似国自然基金
超高频同步整流DC-DC变换器效率优化关键技术研究
- 批准号:62301375
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
衔接蛋白SHF负向调控胶质母细胞瘤中EGFR/EGFRvIII再循环和稳定性的功能及机制研究
- 批准号:82302939
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向5G通信的超高频FBAR耗散机理和耗散稳定性研究
- 批准号:12302200
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
宽运行范围超高频逆变系统架构拓扑与调控策略研究
- 批准号:52377175
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
强震动环境下10-100Hz超高频GNSS误差精细建模及监测应用研究
- 批准号:42274025
- 批准年份:2022
- 资助金额:56 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331302 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331301 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403134 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant