CAREER: Quanta Computational Imaging with Single-Photon Cameras
职业:单光子相机的量子计算成像
基本信息
- 批准号:1943149
- 负责人:
- 金额:$ 55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Single-photon avalanche diodes (SPADs) are an emerging sensor technology capable of detecting individual incident photons and capturing their time-of-arrival with picosecond precision. Due to their high sensitivity and time resolution, SPADs are driving an imaging revolution, enabling extreme applications that were hitherto considered impossible: imaging at trillion frames-per-second, non-line-of-sight imaging, and microscopic imaging at nano time-scales. Despite these capabilities, SPADs are considered specialized devices used only in ultra-dark environments and restricted to a limited set of niche applications. This project develops technologies to expand the scope of SPADs as general-purpose cameras with a broad range of applications. The developed technologies will not only spur wide-spread adoption of SPADs in fields like life science, astronomy, and medicine, where operating with the smallest amount of light possible is critical to success, but also enable new, highly demanding applications. 3D cameras will be able to achieve substantially higher depth resolution than current state-of-the-art at long distances, enabling vehicles (aerial, terrestrial, and underwater) to navigate autonomously in challenging weather conditions and on rugged terrains. The results from this research will be disseminated through scientific conferences and journals. Some materials will be integrated into a textbook on active 3D imaging techniques. This research develops mathematical and physical foundations for a new class of imaging and computational techniques which will transform SPADs into `all-purpose' cameras capable of operating in diverse conditions (dark to bright sunlight), for recovering high-quality images and 3D scene information over the entire gamut of imaging conditions. This project develops (a) coded and asynchronous single-photon imaging, two novel families of active single-photon imaging techniques that minimize non-linear distortions and can reliably operate in high-flux environments; (b) single-photon computational imaging techniques for capturing scene intensity under passive, uncontrolled lighting (e.g., sunlight); and (c) novel machine learning algorithms for extracting high-level scene information from single-photon sensor data, based on spiking neural networks, enabling rapid, power-efficient scene understanding in dynamic environments, on low-power devices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
单光子雪崩二极管 (SPAD) 是一种新兴的传感器技术,能够检测单个入射光子并以皮秒精度捕获其到达时间。由于其高灵敏度和时间分辨率,SPAD 正在推动一场成像革命,实现迄今为止被认为不可能的极端应用:每秒万亿帧成像、非视距成像以及纳米时间显微成像 -秤。尽管具有这些功能,SPAD 仍被认为是仅在超黑暗环境中使用的专用设备,并且仅限于有限的利基应用。该项目开发的技术可扩大 SPAD 作为具有广泛应用的通用相机的范围。所开发的技术不仅将促进 SPAD 在生命科学、天文学和医学等领域的广泛采用(这些领域以尽可能少的光进行操作是成功的关键),而且还将实现新的、高要求的应用。 3D 相机将能够在长距离上实现比当前最先进技术高得多的深度分辨率,使车辆(空中、陆地和水下)能够在充满挑战的天气条件和崎岖的地形上自主导航。这项研究的结果将通过科学会议和期刊传播。一些材料将被纳入主动 3D 成像技术的教科书中。这项研究为新型成像和计算技术奠定了数学和物理基础,这些技术将把 SPAD 转变为能够在各种条件下(黑暗到明亮的阳光)运行的“通用”相机,用于恢复高质量图像和 3D 场景信息在整个成像条件范围内。该项目开发 (a) 编码和异步单光子成像,这是两个新颖的主动单光子成像技术系列,可最大限度地减少非线性失真,并能在高通量环境中可靠运行; (b) 单光子计算成像技术,用于捕获被动、不受控制的照明(例如阳光)下的场景强度; (c) 基于尖峰神经网络的新型机器学习算法,用于从单光子传感器数据中提取高级场景信息,从而在低功耗设备上实现动态环境中快速、高效的场景理解。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mohit Gupta其他文献
Differential Scene Flow from Light Field Gradients
光场梯度的差分场景流
- DOI:
10.1007/s11263-019-01230-z - 发表时间:
2019-07-26 - 期刊:
- 影响因子:19.5
- 作者:
Sizhuo Ma;Br;on M. Smith;on;Mohit Gupta - 通讯作者:
Mohit Gupta
Structured light 3D scanning in the presence of global illumination
全局照明下的结构光 3D 扫描
- DOI:
10.1109/cvpr.2011.5995321 - 发表时间:
2011-06-20 - 期刊:
- 影响因子:0
- 作者:
Mohit Gupta;Amit K. Agrawal;A. Veeraraghavan;S. Narasimhan - 通讯作者:
S. Narasimhan
Advanced active imaging with single photon avalanche diodes
采用单光子雪崩二极管的先进主动成像
- DOI:
10.1117/12.2500659 - 发表时间:
2018-10-04 - 期刊:
- 影响因子:0
- 作者:
Martin Laurenzis;Marco La Manna;M. Buttafava;A. Tosi;J. Nam;Mohit Gupta;A. Velten - 通讯作者:
A. Velten
Thiophene-based lipids for mRNA delivery to pulmonary and retinal tissues
用于将 mRNA 递送至肺和视网膜组织的基于噻吩的脂质
- DOI:
10.1073/pnas.2307813120 - 发表时间:
2024-03-04 - 期刊:
- 影响因子:11.1
- 作者:
Yulia Eygeris;Mohit Gupta;Jeonghwan Kim;A. Jozić;Milan Gautam;Jonas Renner;Dylan Nelson;Elissa Bloom;Adam Tuttle;Jonathan Stoddard;Rene Reynaga;M. Neuringer;Andreas K Lauer;Renee C Ryals;G. Sahay - 通讯作者:
G. Sahay
Towards Efficient Forecasting of Web Articles using Fibonacci Median
使用斐波那契中位数实现网络文章的有效预测
- DOI:
10.1109/ici53355.2022.9786916 - 发表时间:
2022-04-14 - 期刊:
- 影响因子:0
- 作者:
Mohit Gupta;Pulkit Mehndiratta - 通讯作者:
Pulkit Mehndiratta
Mohit Gupta的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mohit Gupta', 18)}}的其他基金
Travel: NSF Student Travel Grant for 2023 IEEE International Conference on Computational Photography (IEEE ICCP)
旅行:2023 年 IEEE 国际计算摄影会议 (IEEE ICCP) 的 NSF 学生旅行补助金
- 批准号:
2331283 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
相似海外基金
The Quanta Program: Quantum Nanotechnology Training in Alberta
量子计划:阿尔伯塔省量子纳米技术培训
- 批准号:
495446-2017 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Collaborative Research and Training Experience
The Quanta Program: Quantum Nanotechnology Training in Alberta
量子计划:阿尔伯塔省量子纳米技术培训
- 批准号:
495446-2017 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Collaborative Research and Training Experience
The Quanta Program: Quantum Nanotechnology Training in Alberta
量子计划:阿尔伯塔省量子纳米技术培训
- 批准号:
495446-2017 - 财政年份:2021
- 资助金额:
$ 55万 - 项目类别:
Collaborative Research and Training Experience
The Quanta Program: Quantum Nanotechnology Training in Alberta
量子计划:阿尔伯塔省量子纳米技术培训
- 批准号:
495446-2017 - 财政年份:2021
- 资助金额:
$ 55万 - 项目类别:
Collaborative Research and Training Experience
The Quanta Program: Quantum Nanotechnology Training in Alberta
量子计划:阿尔伯塔省量子纳米技术培训
- 批准号:
495446-2017 - 财政年份:2020
- 资助金额:
$ 55万 - 项目类别:
Collaborative Research and Training Experience